Index

A

ADCO Phase 1 4D pilot results, 383–394
acquisition and processing, 387–389
background, 385
4D fit with reservoir challenges, 385–386
4D results, 389–392
methods, 386–387
results, 383–385
Alba field, ocean-bottom cable seismic
survey, 315–323
methods, 316–319
AVO models, 317–318
converted-wave models, 318
4D models, 316–317
3D full-field OBC survey, 319
2D OBC field trials, 318–319
VSP data, 318
results, 319–322
AVO results, 319–320
converted-wave results, 320–321
data management and integrated
interpretation, 322
4D changes, 319
geologic model, 322
recent well tests, 321–322
Andrew field, 556–557
Angola, 4D monitoring, impact on
understanding reservoir and
economics, 375–382
field-development context, 376–377
4D information, integration of, 377–378
4D information, value versus cost, 380
4D integration, results of, 379–380
development well, based on 4D data,
380
fluid movement within reservoir,
general comprehension of, 379
history match, 4D input to, 379–380
geologic context, 376
geosophysical context, 376
monitoring project, extent, strategy,
375–376
reservoir model, constraint of, 378

B

Bay Marchand field, value of geophysics in
production from, 229–248
geologic setting, 229–230
discovery, 230–231
delineation, 231
development, 231–233
field maturity, 233–246
contemplated sale of field, 234
groephysics, possible applications,
245–246
1986 3D seismic project, 234–235
stratigraphic geophysics, 243–245
3D seismic data, impact of, 235–241
3D acquisition, additional, 241
time-lapse seismic (4D), 241–243
Beryl Alpha field, U. K. North Sea (see
streamer and OBC seismic data,
comparison, Beryl Alpha field)
Bonga field, offshore Nigeria, 249–258
channel reservoir examples,
characterization of, 251–252
connectivity, modeling of, 255
exploration history, 249–250
4D seismic, 256
groephologic infill scenarios, 254–255
groephysical and geologic setting,
250–251
in-field opportunities, 257
model-based probabilistic seismic
inversion, 252–254
multiple realization modeling, 255–256
net sand prediction, 252–254
uncertainty, management by 4D seismic,
256
uncertainty, quantification of, 255–256
Brent-Statfjord reservoir, 348–349
Khuff Formation, Oman, prograding
shoal, 283–284
Malampaya field, Philippines,
289–291
Miocene isolated buildup, Luconia
Province, Malaysia, 284–286
Natih E Formation, Oman, ramp-type
carbonate reservoir, 286–289
Chaco Basin, Bolivia (see seismically
driven appraisal and development)
chert reservoir (see Thirty-one Formation)
Clair field (see P-wave imaging)
competency, ingredients for successful
petroleum professional, 37–48
competency, 37–39
described, 37
technical, and petroleum industry, 38–39
hope and optimism, 46
leadership, 44
self-awareness, 39, 44
soft skills and petroleum industry, 39
team skills, 44–46
complicated reservoir targets, detection of
(see electromagnetic [EM] and
seismic data)
CO2 storage (see Sleipner underground
CO2 storage site)
crosswell electromagnetic and seismic
imaging, steam-flood project (see
steam flood)
CSEM data, and detection of hydrocarbon
reservoirs, deepwater Sabah,
Malaysia, 177–185
CSEM survey, 178–179
3D EM modeling cube, 179–181
3D scenario-based EM modeling,
181–184
carbonate reservoirs, 3D visualization of,
283–292

C

decision making, best practices in (see
hydrocarbon resource estimation)
deepwater turbidites, P and S impedance in
(see net-to-gross, estimation)
development geophysics, 225–227
Draugen field, 347–348
dual-azimuth and wide-azimuth technology
compared, subsalt imaging, Mad
Dog field, 167–175
dual-azimuth imaging project, 168
dual-azimuth tomography and salt model
building, 169–171
2D SRME enhancements, 169
wide azimuth, 171–174

E
elastic-wave seismic stratigraphy (see
reservoir characterization)
electromagnetic (EM) and seismic data,
joint processing and integrated
interpretation, 187–191
electric profiles and seismic sections,
comparison of, 189
joint processing and integrated
interpretation, EM and seismic,
189–191
TFEM principles and survey design,
188–189
exploration appraisal, 123–125

F
formation fluid pressure, estimation using
high-resolution velocity, 135–145
sand-pressure estimation, 142–143
seismic inversion and high-resolution
pressure analysis for drilling,
140–142
PSSI, 140–141
PWSI, 141–142
seismic velocity and pore pressure, at
regional and prospect scales,
138–140
uncertainty in predicted pressure,
143–144
velocity to effective pressure calibration,
using rock-physics principles,
136–138
4D fluid imaging, optimization of, 531–542
elastic inversion, 534–535
fluid and lithology imaging, optimizing
of, 536–539
géophysique and AVO, 533–534
integrated volume interpretation, 539–541
OWC movements, mapping of, 535–536
reservoir geology, 532–533
4D microgravity method for waterflood
surveillance, gravity
measurements, Prudhoe Bay,
Alaska, 461–473
4D survey methodology, 465–471
history of field experiments, 462–463
statistical background, 471–473
time-lapse gravity noise, 463–465
4D monitoring of saturation changes, Middle
Eastern carbonate reservoir (see
ADCO Phase 4D pilot results)
4D seismic reservoir monitoring, assessing
feasibility of, 343–350
description and illustration of method,
344–349
acoustic properties, changes in,
detectability of, 346–347
Brent-Statford, timing of repeat
surveys, 348–349
calibration, seismic and well data, 345
Draugen example, feasibility of repeat
survey, 347–348
modeling, seismic changes resulting
from changing acoustic properties,
345–346
noise, estimation of, 345
Yibal example, quality of base survey,
347
outline of method, 344
approach, 344
sparse spike inversion (SSI), 344
4D time strain and geomechanical
compaction, Genesis field,
395–400
compaction at Genesis, 397–399
estimating time shifts, 396–397
time shifts and time strains, 395–396
free gas and gas hydrates, estimation of
amounts (see gas hydrate)
full-azimuth acquisition (see ocean-bottom
seismic)

G
Gannet fields, Central North Sea
(see time-lapse seismic data, in
Gannet fields)
gas hydrate, and free gas, estimation of
amounts from marine seismic
data, 503–511
calculation parameters, 510–511
interval velocities, and rock-physics
interpretation of, 505–508
results, verification of, 508
rock-physics model, 509–510
sediments without gas hydrate,
509–510
rock-physics interpretation of interval
velocities, 505–508
input parameters, 506
inversion methodology, 506–507
rock-physics model, 505
seismic data and interval velocities,
504–505
sensitivity analysis, 508–509
gas hydrates, estimation of, by seismic
inversion, Gulf of Mexico,
495–502
quantitative estimation, 499–501
rock physics of gas hydrates, 496–499
stratigraphic evaluation, 495–496
géophysique, value of, in production, Bay
Marchand field (see Bay
Marchand field)
Gulf of Mexico (see gas hydrates)
Gulf of Mexico, and reservoir modeling
(see reservoir modeling,
improvement with time-lapse
seismic data)
imaging and reservoir monitoring

(see virtual-source method)

integrated project teams and innovative technologies, 5–12

case studies, 7–10

Abgami, 9–10

intelligent-well systems, 10

reservoir and facility-network models, combined, 10

well counts, optimization using experimental data, 10

Jack, 10

Kern River, 7–8

aquifer-interdiction full-field simulations, 8

data mining, 8

optimized steam-flood modeling, 8

steam-flood surveillance, 7–8

Minas, 8–9

surfactant pilot, 8–9

waterflood optimization, 8

San Ardo, 10

i-Field implementation, 10

Takula, 9

dynamic reservoir data, integration of, 9

Tengiz, 9

Monte Carlo models and experimental design, 9

Wafra Ratawi, 9

horizontal injection and dump flooding, 9

project management, 9

complex recovery processes, 6–7

4D seismic, advances in, 6

integrated reservoir management, 10–11

seismic data and reservoir management, 6

technology and industry change, 5–6

integrated reservoir studies, maximizing effectiveness, and practical approaches, 13–20

better practice, 18–19

data sampling, 18

key wells and calibration, 18

physical analogs of reservoir-type behavior, 18–19

future, 19

quality assurance, 13–15

ground-truthing of porosity, permeability, fluid saturation, 14

reservoir-interpretation issues, 15–18

permeability, estimation of, 16–18

algorithms, partitioned, 16–17

anisotropy, 17–18

scale effects, 17

reservoir, subdivisions of, 16

reservoir description, approach to, 15–16

J

Jotun field, 4D seismic, 355–363

current work, 362–363

drilling, results of, 361–362

economic impact, 362

fluid contact movement, characterization, time-lapse seismic and production logging, 355–363

interpretation validation, 4D seismic and production logging data, 360–361

seismic data acquisition and processing, 356–361

K

Khuff Formation, Oman, 283–284

Kvitbjørn field, 419–420

L

life-of-field seismic system, Valhall, Norwegian North Sea, 581–625

acquisition sampling requirements, assessment of, 612–613

compaction, and 4D responses, 589–595

4D marine-streamer observations, 592–595

4D seismic response, 591–592

velocities, in-well measurements during subsidence, 592

field description, background, challenges, 581–584

4D seismic and production data, history-matching of, 614–623

history-matching process, 618–620

combined objective function, 619–620

simulation model uncertainties, 619

history-matching results, 620–622

seismic and well data, 620–622

well data only, 620

overburden, effects of, 615

prediction cases, 622–623

synthetic seismic, 615–618

dynamic rock properties, 616

rock-property model, 615–616

seismic match quality, 617

time-shift and SNA attribute maps, 616–617

weighted correlation, 617–618

well-based match quality, 618

history-match focus area, 618

life-of-field seismic, 586–588

installation of, 586–588

origins, 586

life-of-field system, operation of, 595–600

acquisition systems, 596

expectations, 599–600

operations experience, first surveys, 596–597

results, 598–599

workflows: processing, data management, and interpretation, 598

multicomponent seismic data, role in development of field, 603–612

acquisition and preprocessing, 606–607

azimuthal anisotropy analysis, 607–612

azimuthal anisotropy from 4-C 3D surveys, 605–606

4-C ocean-bottom seismic data, use of, 604–605

shear-wave splitting and azimuthal anisotropy, 605

passive seismic monitoring, 613–614

repeatability using permanently installed seismic array, 600–603

geometry repeatability, 600–601

streamer and VSP acquisition, comparison with, 601

rock and fluid properties, 588–589

seismic modeling, 589

sensitivities, 589

technology history at Valhall, 584–586

low-gas-saturation sands, seismic amplitudes from (see seismic amplitudes)

Lunskoye field, offshore Sakhalin (see reservoir modeling, integrated)

M

Mad Dog field (see dual-azimuth and wide-azimuth technology compared)

Malampaya field, Philippines, 289–291
N 

Nativi E Formation, Oman, 286–289
net-to-gross, estimation from P and S impedance in deepwater turbidites, 147–154
AI-SI crossplot, 150
anisotropy correction, 147–148
impedance inversion and seismic N/G computation, 150–153
V_s-V_p relationships, 148–150
Nigeria, Bonga field, integrated seismic and subsurface characterization (see Bonga field)
Nile Delta, seismic imaging (see multiazimuth 3D)
North Sea, turbidite system, seismic reservoir mapping (see seismic reservoir mapping)

O 

ocean-bottom-cable seismic survey (see Alba field)
ocean-bottom seismic, and full-azimuth acquisition, 415–421
acquisition geometry, consideration of, 417–418
Heidrun (2003), 420
Kvitebjørn (2002), 419–420
Snorre (2004), 419
Statfjord (1997) 416–417
Statfjord (2002), 418
Volve (2002), 418–419

P 

passive seismic monitoring of reservoirs: case study, Oman (see Oman, case study)
petroleum geologist, technical skills and competencies for, 49–58
competency, defined, 49–57
geologic, 49–52
garphyysical, 51, 53–57
continuing education, 57
predrill seismic-predictions platform as a well-planning tool, 127–133
determination of lithology, porosity, and fluids, seismic process for, 130–131
theory and method, 130
drilling operations, recapitulation of, 129–130
enhanced seismic porosity and SWF prediction, 132
prediction of pore pressure and gradient, seismic process for, 131–132
predrill plan, 129
predrill prospect identification, 130
production and emissions forecasting, best practices in (see hydrocarbon resource estimation)
production geophysics, 351–353
prograding shoal, 283–284
Prudhoe Bay, Alaska (see 4D microgravity method for waterflood surveillance)
Prudhoe Bay, waterflood, microgravity surveillance, 475–481
P-wave imaging, improved with 3D OBS data from Clair field, 325–329
background, 325
data, 325
processing, 326–327
results, 327–328

R 

ramp-type carbonate reservoir, 286–289
reservoir characterization and elastic-wave seismic stratigraphy, 513–529
data examples, 516–529
Class 2 reservoirs, 527–529
deep geology, Gulf of Mexico, northern shelf, 523–527
fizz-gas and commercial-gas sandstone reservoirs, 519–521
fractured reservoirs, 521–523
low-porosity carbonate system, 516–519
P and S data, depth registration of, 514–515
P and S polarization vectors and reflectivity, 515–516
seismic reflections and chronostratigraphic surfaces, 513–514
reservoir engineering, fundamentals, 61–82
enhanced-oil-recovery (EOR) processes, 80
fluid flow through porous media, 72–74
compressible and slightly compressible flow, 73
flow geometry, 73
fluid flow, mechanisms of, 73
fluid-flow equations, basic, 73–74
laminar and turbulent flow, 73
unsteady-state, steady-state, and pseudosteady-state flow, 72–73
improved-oil-recovery processes: waterflooding, 79–80
waterflood design, 79–80
waterflood efficiency, 79
waterflood surveillance, 80
petroleum fluid phase behavior, 75
petroleum reservoirs, classification of, 74–75
black-oil reservoir, 74
gas reservoir, 74
gas-condensate reservoir, 74
heavy-oil and extra-heavy-oil reservoir, 74–75
volatile-oil reservoir, 74
reservoir drive mechanisms, 75–76
aquifer water drive, 76
gas-cap drive, 76
gravity drainage, 76
liquid and rock compressibility drive, 75
solution-gas drive, 75–76
reservoir fluid properties, 68–72
bubblepoint pressure, 69
dewpoint pressure, 69
estimation of petroleum reserves, 71–72
fluid viscosity and mobility, 70
gas formation volume factor, 70
oil formation volume factor, 69–70
oil gravity, 69
petroleum initially in place, recovery efficiency, reserves, 71
Index

pressure-volume-temperature (PVT) properties, 69
pressures, abandonment, bottomhole, and datum, 68–69
proved, probable, and possible reserves, 72
recovery efficiency, 71
reservoir pressure, described, 68
reservoir pressure, initial and average, 68
solution gas/oil ratio, 69
total compressibility, 71
reservoir life cycle, 61–62
reservoir management, 61–62
reservoir performance analysis, 76–79
reservoir management and field life cycle, 61–62
reservoir geophysics, fundamentals of, 83–100
reservoir simulation, 81
reservoir rock properties, 62–68
capillary pressure, 67
formation compressibility, 66
movable oil saturation, 67
permeability, effect on reservoir performance, 65
permeability anisotropy, 65–66
porosity-permeability relationship, 66
relative permeability, 66
reservoir characterization, 67–68
residual oil saturation, 66–67
skeletal and dynamic, 62–65
data, sources of, 64
permeability and Darcy’s law, 64–65
porosity, 62–63
wettability, 67
reservoir simulation, 81
reservoir geophysics, fundamentals of, 101–122
advanced seismic concepts, 116–120
amplitude variations with angle of incidence, 116–117
amplitude variations with offset, 116–117
fluid substitution, 117
multicomponent seismic surveys, 119–120
reservoir monitoring with time-lapse (4D) seismic surveys, 118–119
spectral decomposition, 118
controlled-source electromagnetic (CSEM) surveys, 120
drilling developments, 120
reservoir-rock and seismic properties, 101–104
seismic reflections, 102–104
seismic velocity, 104
seismic interpretation, 110–116
hydrocarbon indicators, 114–115
reservoir reflections, identifying and working with, 112–114
stratigraphic interpretation, 110–112
3D seismic interpretation, pitfalls in, 115–116
3D seismic surveys, 104–116
resolution, 109
seismic data acquisition, 105–107
seismic data processing, 107–109
3D survey design, 104–105
reservoir geophysics, history and overview, 21–28
deefined, 21–23
development, 23–25
in academia, 23
in oil and gas industry, 23–25
economic issues, 25–26
Society of Exploration Geophysicists, role of, 27–28
specific aspects of, 26–27
borehole seismic, 26–27
electrical and electromagnetic surveys, 27
3D surface seismic, 26
reservoir geophysics: the road ahead, 481–483
reservoir management, value of geophysical information for, 29–36
value of information (VOI), 29–33
principles of, 29–31
probabilities of, estimation for, 31–33
value-of-information (VOI) analysis, model-based, example, 33–36
reservoir management and field life cycle, 1–4
reservoir modeling, and integration of data at appropriate scales, 257–272
depositional facies, multiple-point simulation of, 270–271
géologic background, 267–268
lithofacies and rock property, two-point simulation of, 271–272
problem statement of, 268–269
seismic data analysis by PCA clustering, 269–270
uncertainty, analysis of, 272
reservoir modeling, improvement with time-lapse seismic data, Gulf of Mexico, 543–554
project workflow, 544–552
acoustic response to gas-condensate fluid production, 544–546
production analysis, 4D seismic data, 546–548
seismic history matching, 548–552
reservoir management, impact on, 552–553
SHM objective function, 554
SHM parameter selection, 554
reservoir modeling, integrated, Lunskoye field, offshore Sakhalin, 259–266
aquifer modeling, 265
dynamic realm, upscaling, 264
fluid contacts, 264–265
hierarchical framework levels: seismic, acoustic, lithologic, geo-infill, 261–262
inversion process, 262–263
pressure-volume-temperature (PVT) and fluid properties, 264
reservoir models, 265
rock-property model, 262
saturation and rock-fluid interaction, modeling, 264
stratigraphy and stratigraphic variations, 261
3D seismic data, 260–261
well productivity, 263
reservoir monitoring and imaging (see virtual-source method)
reservoir targets, complicated (see electromagnetic [EM] and seismic data)
rock physics, fundamentals of, 83–100
anisotropy and shale properties, 94–95
compressional versus shear velocity, 93
density, 92
dispersion, magnitude of, 98
fluid substitution: Gassmann equation, 84–87
fluids and saturation, 88–89
lithology, 91–92
pore-fluid properties, 87–88
CO₂, 87
gas-in-water solutions and mixtures, 88
hydrocarbon gases, 87
hydrocarbon oils, 87
steam, 88
water and brine, 87–88
porosity, pore shape, and clay content, 89–90
pressure, 90–91
range of applicability, and use of theories or empirical equations, 97–98
rock-physics rules of thumb, 95–97
sampling rock for stable statistics about rock physics, 98
temperature, 91
texture, 92–93
use of rock-physics data, in future, 98
Vp/Vs ratio, 94

S

Sabah, Malaysia (see CSEM data)
Sakhalin (see reservoir modeling, integrated)
Methods and Applications in Reservoir Geophysics

SEC defined reserves booking: what the petrophysicist needs to know, 203–214

certainty, reasonable, increasing, 205–206
definitions, terminology, and SEC positions, 204–205
formation evaluation data sets, types of, consideration of, 206–212
core analysis data, 208–210
production and well-test data, 207–208
well-log data, 211–212
planning, effective, considerations for, 212–213

seismic amplitudes from low-gas-saturation sands, 155–162
Lisa Anne prospect, 155–158
well results, 158–160
seismic reservoir mapping, 3D AVO, North Sea, turbidites, 293–314
facies and pore fluids, characterization from seismic data, 302–310
AVO analysis at well locations, 302
blind test at well locations, 309–310
facies and pore-fluid prediction, and probability maps, 306–309
facies and pore-fluid prediction from 2D seismic section, 305–306
probability maps from 3D AVO data, 306–309
2D synthetic seismic modeling, 302–305
nonparametric facies and pore-fluid pdfs, creation, 299–302
seismic lithofacies, classification from well logs by multivariate statistics, 298–299
seismic lithofacies identification and rock-physics analysis, 295–298
seismic reservoir monitoring, 4D (see 4D seismic reservoir monitoring)
seismic signature of geomechanical compaction, Genesis field (see 4D time strain)

seismically driven appraisal and development, Chaco Basin, Bolivia, case study, 193–201
applications and results, 199–201
AVO-AVA interpretation, 196–197
background and regional geology, 193–194
Cenozoic, 194
Mesozoic, 194
Paleozoic, 194
discovery of field, 194–195
relative impedance inversion, 197
seismic-guided appraisal and development, 195–196
simultaneous prestack (full-bond) inversion, 197–199

spectral decomposition, 197
seismic-engineering integration, quantitative, case studies, 555–560
Andrew field, OWC mapping for infill wells, 556–557
Harding field, improvement of reservoir model predictions, 557–558
multiple solutions, power of, 556
TDRM workflow, 555–556
Valhall field, reduction of uncertainty in reservoir-model predictions, 558
Sleipner underground CO2 storage site, North Sea, seismic monitoring, 561–569
injection of CO2, 562
seismic response, analysis of, 563–566
Gassmann modeling, 563–564
petrophysical properties, caprock and intrashale layers, 563
petrophysical properties, of injected CO2, 563
petrophysical properties, Utsira Sand, 563
pressure effect, 564
tuning effect, at top of reservoir, 565
velocity "pushdown" effect, 566
wavelet determination and synthetic modeling, 564–565
time-lapse, seismic data, interpretation of, 566–568
observed seismic reflectivity, 566–568
Utsira Sand, Sleipner area, geology of, 561–562
injection-site area, reservoir geology of, 561–562
Snorre field, 419
spectral decomposition, application to gas basins in Mexico, 163–166
Burgos Basin studies, 163–165
Macuspana Basin example, 165–166
Statfjord field, 416–417
steam flood, crosswell electromagnetic and seismic imaging, 451–460
data acquisition, 452–454
crosswell EM measurements, 453–454
crosswell seismic measurements, 453
well-log data, 452–453
data analysis, 454–457
crosswell EM inversion 455–456
crosswell seismic-reflection imaging, 455
differences between reservoir intervals, 457
integration, EM and seismic data with borehole data and lithology, 456–457

seismic tomography, 454–455
streamer and OBC seismic data, comparison, Beryl Alpha field, U. K. North Sea, 401–414
discussion, 411–413
implications, 413
data processing, 413
OBC survey design, 413
multiples, 411–412
signal-to-noise ratio, 412–413
method, 403–406
acquisition, 403–404
1997 3D streamer survey, 403–404
2000 Beryl Alpha 3D 4-C OBC survey, 404
data sets available for comparison, 405–406
decimated-fold, decimated-azimuth OBC P and Z volumes, 406
decimated-fold, decimated-azimuth OBC volume, 405–406
decimated-fold, full-azimuth OBC volume, 405
full-fold, full-azimuth OBC PZ volume, 405
further decimated-fold, decimated-azimuth OBC volume, 406
processing, 404–405
results, 406–411
comparison, streamer, PZ, and individual P- and Z-component OBC volumes, 408–411
ambient noise levels, 409
frequency content, 409
level of multiple contamination, 409–411
signal-to-noise ratios, 409
visual comparison, 408–409
comparison, streamer and variously decimated OBC PZ volumes, 406–408
role of azimuth, 407–408
signal-to-noise ratios, 407
visual comparison, 406–407
study area: Beryl Alpha field, 403
subsalt imaging, Mad Dog field (see dual-azimuth and wide-azimuth technology compared)
supporting technologies, the, 59

T

Thirty-one Formation, west Texas, rock-property and seismic attribute analysis, 273–282
methods, 274–276
results, 276–279
acoustic-impedance inversion, 278
laboratory measurements and fluid substitution, 276–278
seismic attributes, 278–279
3D PP/PS prestack depth migration, Volve field, 423–428
OBS survey, 424
seismic processing, OBS data, 424
simultaneous PP/PS prestack depth-imaging results, 425–428
simultaneous PP/PS prestack depth-imaging workflow, 424–425, 426
Volve field, 423–424
tight-gas sand reservoir, Wind River Basin, seismic evaluation (see Wind River Basin)
time-lapse seismic data (see reservoir modeling, improvement with time-lapse seismic data)
time-lapse seismic data, in Gannet fields, Central North Sea, 365–374
Gannet A field, 371–372
4D interpretation, 371
future work, 371–372
Gannet B field, 372–274
4D results, integration of, 372–373
implication for the field, 373–374
Gannet C field, 366–368
dynamic modeling, 367–368
4D seismic interpretation, 366–367
Gannet D field, 368–371
4D acquisition and processing, 368–369
4D interpretation, 369–371
Andrew reservoir, 370–371
Rogaland reservoir, 369–370
turbidites, North Sea, seismic reservoir mapping (see seismic reservoir mapping)

U
uncertainty evaluation, best practices in
(see hydrocarbon resource estimation)

V
Valhall, Norwegian North Sea (see life-of-field seismic system)
virtual-source method, applications to imaging and reservoir monitoring, 571–579
artifacts and unwanted arrivals, 572
basic concept, 571–572
deployment issues and opportunities for monitoring, 577–579
high-fidelity and in situ time-lapse seismic, 576–577
imaging under complex overburden, 574–575
look-ahead VSP, 573–574
outlook, 579
salt-cavern modeling study, 575–576
virtual check shot, 572–573
Volve field, 418–419
VSP: beyond time-to-depth conversion, 429–440
beyond VSP imaging, 434–437
elastic full-waveform inversion, 435–437
surface-seismic imaging using VSP-measured Green’s functions, 435–437
3D VSP imaging, 431–432
feasibility planning for 3D FDM modeling, 430
imaging with multiples, 432–433
salt-flank imaging using interferometry, 433–434
3D VSP imaging examples, 431–432

W
waterflood, microgravity surveillance (see Prudhoe Bay, Alaska)
well planning by multidiscipline deepwater operations team (see predrill seismic-predictions platform)
Wind River Basin, tight-gas sand reservoir, seismic evaluation, 331–342
attribute correlation with well yield, 338–340
fractures, geologic characterization, 332–333
fractures, nonseismic geophysical characterization, 333
fractures, seismic characterization, 333–334
gologic setting, Wind River Basin, 334–336
3D compressional-wave seismic survey, 336
3D P-wave survey, two-azimuth attribute anisotropy, 336–338
world’s first 4D microgravity surveillance of waterflood (see Prudhoe Bay, waterflood)

Y
Yibal field, 347