This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Full-waveform inversion (FWI) is a pivotal tool in seismic exploration and seismology but encounters a persistent challenge known as “cycle-skipping,” causing it to frequently converge to local minima. Wavefield reconstruction inversion (WRI) has emerged as a potential solution to mitigate the risk of cycle skipping. Researchers have provided numerical examples indicating that WRI is less prone to being ensnared in local minima caused by the absence of low-frequency component data and the absence of a well-defined initial model compared with conventional FWI. Despite its potential, the computational demands of WRI have hindered its widespread application, especially in scenarios involving ocean towed streamer seismic acquisition and unknown sources, where the augmented systems differ from source to source. In our study, we introduce a novel approach — sparse curvelet-constrained WRI with source estimation (WRI-SE-CC) — accelerated by graphics processing unit (GPU). Real-time source function estimation is achieved through the variable projection method, and noise-related artifacts are suppressed using sparse curvelet constraints. By optimizing the utilization of hundreds of computation processors within a GPU for parallel computing of matrix-vector multiplications, we present a GPU-based grouped conjugate gradient method to accelerate the computation of WRI-SE-CC. Numerical experiments demonstrate a significant 240-fold acceleration compared with the preconditioned conjugate gradient using one CPU core for computations involving multiple sources. Inversion experiments with the overthrust model demonstrate the capability of our method in mitigating local minima and suppressing noise-related artifacts. Furthermore, we validate the framework on the Chevron 2014 blind test data set, showcasing its effectiveness in addressing practical challenges in the field.

REFERENCES

  • Abubakar, A., W. Hu, T. M. Habashy, and P. M. van den Berg, 2009, Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data: Geophysics, 74, no. 6, WCC47–WCC58, doi: 10.1190/1.3250203.GPYSA70016-8033
  • Aghamiry, H. S., A. Gholami, and S. Operto, 2019, Improving full-waveform inversion by wavefield reconstruction with the alternating direction method of multipliers: Geophysics, 84, no. 1, R139–R162, doi: 10.1190/geo2018-0093.1.GPYSA70016-8033
  • Aghamiry, H. S., A. Gholami, and S. Operto, 2021, On efficient frequency-domain full-waveform inversion with extended search space: Geophysics, 86, no. 2, R237–R252, doi: 10.1190/geo2020-0478.1.GPYSA70016-8033
  • Banerjee, B., T. F. Walsh, W. Aquino, and M. Bonnet, 2013, Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional: Computer Methods in Applied Mechanics and Engineering, 253, 60–72, doi: 10.1016/j.cma.2012.08.023.CMMECC0045-7825
  • Barnier, G., E. Biondi, R. G. Clapp, and B. Biondi, 2023, Full-waveform inversion by model extension: Theory, design, and optimization: Geophysics, 88, no. 5, R579–R607, doi: 10.1190/geo2022-0350.1.GPYSA70016-8033
  • Biondi, B., and A. Almomin, 2014, Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion: Geophysics, 79, no. 3, WA129–WA140, doi: 10.1190/geo2013-0340.1.GPYSA70016-8033
  • Chen, Y., T. A. Davis, W. W. Hager, and S. Rajamanickam, 2008, Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate: ACM Transactions on Mathematical Software, 35, 1–14, doi: 10.1145/1391989.1391995.ACMSCU0098-3500
  • Chen, Y., X. Tian, H. Liu, Z. Chen, B. Yang, W. Liao, P. Zhang, R. He, and M. Yang, 2018, Parallel ILU preconditioners in GPU computation: Soft Computing, 22, 8187–8205, doi: 10.1007/s00500-017-2764-7.
  • Chi, B., L. Dong, and Y. Liu, 2014, Full waveform inversion method using envelope objective function without low frequency data: Journal of Applied Geophysics, 109, 36–46, doi: 10.1016/j.jappgeo.2014.07.010.JAGPEA0926-9851
  • Engquist, B., and B. D. Froese, 2014, Application of the Wasserstein metric to seismic signals: Communications in Mathematical Sciences, 12, 979–988, doi: 10.4310/CMS.2014.v12.n5.a7.1539-6746
  • Esser, E., L. Guasch, T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, 2018, Total-variation regularization strategies in full-waveform inversion: SIAM Journal on Imaging Sciences, 11, 376–406, doi: 10.1137/17M111328X.
  • Fang, Z., C. Da Silva, R. Kuske, and F. J. Herrmann, 2018a, Uncertainty quantification for inverse problems with weak partial-differential-equation constraints: Geophysics, 83, no. 6, R629–R647, doi: 10.1190/geo2017-0824.1.GPYSA70016-8033
  • Fang, Z., R. Wang, and F. J. Herrmann, 2018b, Source estimation for wavefield-reconstruction inversion: Geophysics, 83, no. 4, R345–R359, doi: 10.1190/geo2017-0700.1.GPYSA70016-8033
  • Florian, M., I. Constantin, and D. Florian, 2009, A new look at projected gradient method for equilibrium assignment: Transportation Research Record, 2090, 10–16, doi: 10.3141/2090-02.TRREDM0361-1981
  • Gholami, A., H. Aghamiry, and S. Operto, 2022, Extended full waveform inversion in the time domain by the augmented Lagrangian method: Geophysics, 87, no. 1, R63–R77, doi: 10.1190/geo2021-0186.1.GPYSA70016-8033
  • Golub, G., and V. Pereyra, 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19, R1, doi: 10.1088/0266-5611/19/2/201.INPEEY0266-5611
  • Herrmann, F. J., C. R. Brown, Y. A. Erlangga, and P. P. Moghaddam, 2009, Curvelet-based migration preconditioning and scaling: Geophysics, 74, no. 4, A41–A46, doi: 10.1190/1.3124753.GPYSA70016-8033
  • Herrmann, F. J., and X. Li, 2012, Efficient least-squares imaging with sparsity promotion and compressive sensing: Geophysical Prospecting, 60, 696–712, doi: 10.1111/j.1365-2478.2011.01041.x.GPPRAR0016-8025
  • Huang, G., R. Nammour, and W. Symes, 2017, Full-waveform inversion via source-receiver extension: Geophysics, 82, no. 3, R153–R171, doi: 10.1190/geo2016-0301.1.GPYSA70016-8033
  • Komatitsch, D., G. Erlebacher, D. Göddeke, and D. Michéa, 2010, High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster: Journal of Computational Physics, 229, 7692–7714, doi: 10.1016/j.jcp.2010.06.024.JCTPAH0021-9991
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, Imagenet classification with deep convolutional neural networks: Advances in Neural Information Processing Systems, 1097–1105.
  • Li, X., A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann, 2012, Fast randomized full-waveform inversion with compressive sensing: Geophysics, 77, no. 3, A13–A17, doi: 10.1190/geo2011-0410.1.GPYSA70016-8033
  • Li, Y., B. Biondi, R. Clapp, and D. Nichols, 2014, Wave-equation migration velocity analysis for VTI models: Geophysics, 79, no. 3, WA59–WA68, doi: 10.1190/geo2013-0338.1.GPYSA70016-8033
  • Lin, Y., T. van Leeuwen, H. Liu, J. Sun, and L. Xing, 2023, A fast wavefield reconstruction inversion solution in the frequency domain: Geophysics, 88, no. 3, R257–R267, doi: 10.1190/geo2022-0023.1.GPYSA70016-8033
  • Ma, Y., and D. Hale, 2013, Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion: Geophysics, 78, no. 6, R223–R233, doi: 10.1190/geo2013-0004.1.GPYSA70016-8033
  • Métivier, L., R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, 2016, Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion: Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205, 345–377, doi: 10.1093/gji/ggw014.
  • Nocedal, J., and S. J. Wright, 2000, Numerical optimization: Springer.
  • Operto, S., A. Gholami, H. Aghamiry, G. Guo, S. Beller, K. Aghazade, F. Mamfoumbi, L. Combe, and A. Ribodetti, 2023, Extending the search space of full-waveform inversion beyond the single-scattering Born approximation: A tutorial review: Geophysics, 88, no. 6, R671–R702, doi: 10.1190/geo2022-0758.1.GPYSA70016-8033
  • Peters, B., and F. J. Herrmann, 2016, Constraints versus penalties for edge-preserving full-waveform inversion: The Leading Edge, 36, 94–100, doi: 10.1190/tle36010094.1.
  • Peters, B., and F. J. Herrmann, 2019, A numerical solver for least-squares sub-problems in 3D wavefield reconstruction inversion and related problem formulations: 89th Annual International Meeting, SEG, Expanded Abstracts, 1536–1540, doi: 10.1190/segam2019-3216638.1.
  • Peters, B., F. J. Herrmann, and T. van Leeuwen, 2014, Wave-equation based inversion with the penalty method: Adjoint-state versus wavefield-reconstruction inversion: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20140704.
  • Peters, B., B. R. Smithyman, and F. J. Herrmann, 2019, Projection methods and applications for seismic nonlinear inverse problems with multiple constraints: Geophysics, 84, no. 2, R251–R269, doi: 10.1190/geo2018-0192.1.GPYSA70016-8033
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246X.2006.02978.x.GJINEA0956-540X
  • Pratt, G., C. Shin, and G. Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998.00498.x.GJINEA0956-540X
  • Qiu, L., N. Chemingui, Z. Zou, and A. Valenciano, 2016, Full-waveform inversion with steerable variation regularization: 86th Annual International Meeting, SEG, Expanded Abstracts, 1174–1178, doi: 10.1190/segam2016-13872436.1.
  • Rezaei, A., H. Aghamiry, A. Gholami, and S. Operto, 2021, Iterative reconstruction of data assimilated wavefields in the extended-source full-waveform inversion: 82nd Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202113146.
  • Rizzuti, G., M. Louboutin, R. Wang, and F. J. Herrmann, 2021, A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion: Geophysics, 86, no. 6, R879–R893, doi: 10.1190/geo2020-0743.1.GPYSA70016-8033
  • Schmidt, M., D. Kim, and S. Sra, 2012, Projected Newton-type methods in machine learning: MIT Press, 305–327.
  • Shewchuk, J. R., 1994, An introduction to the conjugate gradient method without the agonizing pain: Carnegie-Mellon University, Department of Computer Science.
  • Song, C., and T. Alkhalifah, 2020, Source-independent efficient wavefield inversion: Geophysical Journal International, 222, 697–714, doi: 10.1093/gji/ggaa196.GJINEA0956-540X
  • Song, C., and T. A. Alkhalifah, 2021, Wavefield reconstruction inversion via physics-informed neural networks: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, doi: 10.1109/TGRS.2021.3123122.IGRSD20196-2892
  • Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical prospecting, 56, 765–790, doi: 10.1111/j.1365-2478.2008.00698.x.GPPRAR0016-8025
  • Symes, W. W., 2020, Wavefield reconstruction inversion: An example: Inverse Problems, 36, 105010, doi: 10.1088/1361-6420/abaf66.INPEEY0266-5611
  • Tarantola, A., and B. Valette, 1982, Generalized nonlinear inverse problems solved using the least squares criterion: Reviews of Geophysics, 20, 219–232, doi: 10.1029/RG020i002p00219.REGEEP8755-1209
  • van den Berg, P. M., and R. E. Kleinman, 1997, A contrast source inversion method: Inverse Problems, 13, 1607, doi: 10.1088/0266-5611/13/6/013.INPEEY0266-5611
  • van Leeuwen, T., and F. J. Herrmann, 2013, Mitigating local minima in full-waveform inversion by expanding the search space: Geophysical Journal International, 195, 661–667 doi: 10.1093/gji/ggt258.GJINEA0956-540X
  • van Leeuwen, T., and F. J. Herrmann, 2015, A penalty method for PDE-constrained optimization in inverse problems: Inverse Problems, 32, 015007, doi: 10.1088/0266-5611/32/1/015007.INPEEY0266-5611
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033
  • Warner, M., and L. Guasch, 2016, Adaptive waveform inversion: Theory: Geophysics, 81, no. 6, R429–R445, doi: 10.1190/geo2015-0387.1.GPYSA70016-8033
  • Warner, M., T. Nangoo, N. Shah, A. Umpleby, and J. Morgan, 2013, Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting: 83rd Annual International Meeting, SEG, Expanded Abstracts, 903–907, doi: 10.1190/segam2013-1067.1.
  • Wu, R.-S., J. Luo, and B. Wu, 2013, Ultra-low-frequency information in seismic data and envelope inversion: 83rd Annual International Meeting, SEG, Expanded Abstracts, 3078–3082, doi: 10.1190/segam2013-0825.1.
  • Xue, Z., H. Zhu, and S. Fomel, 2017, Full-waveform inversion using seislet regularization: Geophysics, 82, no. 5, A43–A49, doi: 10.1190/geo2016-0699.1.GPYSA70016-8033
  • Yang, M., Z. Fang, P. Witte, and F. J. Herrmann, 2020, Time-domain sparsity promoting least-squares reverse time migration with source estimation: Geophysical Prospecting, 68, 2697–2711, doi: 10.1111/1365-2478.13021.GPPRAR0016-8025
  • Yang, Y., B. Engquist, J. Sun, and B. F. Hamfeldt, 2018, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion: Geophysics, 83, no. 1, R43–R62, doi: 10.1190/geo2016-0663.1.GPYSA70016-8033
  • Ying, L., L. Demanet, and E. Candes, 2005, 3D discrete curvelet transform: Proceedings of SPIE, 5914, 591413, doi: 10.1117/12.616205.PSISDG0277-786X