This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Extending the search space of full-waveform inversion beyond the single-scattering Born approximation: A tutorial review

Authors:

Full-waveform inversion (FWI) can be made immune to cycle skipping by matching the recorded data with traveltime errors smaller than one-half period from inaccurate subsurface models. To achieve this goal, the simulated wavefields can be computed in an extended search space as the solution of an overdetermined problem aimed at jointly satisfying the wave equation and fitting the data in a least-squares sense. This leads to data-assimilated wavefields that are computed by solving the wave equation in the inaccurate background model with a data-dependent source extension added to the source term. Then, the subsurface parameters are updated by canceling out these additional source terms, sometimes inaccurately called wave equation errors, to push the background model toward the true model in the left-side wave equation operator. Although many studies are devoted to these approaches with promising numerical results, their governing physical principles and their relationships with classical FWI do not seem to be understood well yet. The goal of this tutorial is to review these principles in the framework of inverse scattering theory whose governing forward equation is the Lippmann-Schwinger equation. From this equation, we find how the data-assimilated wavefields embed an approximation of the scattered field generated by the sought model perturbation and how they modify the sensitivity kernel of classical FWI beyond the Born approximation. We also clarify how the approximation with which these wavefields approximate the unknown true wavefields is accounted for in the adjoint source and in the full Newton Hessian of the parameter-estimation problem. The theory is finally illustrated with numerical examples. Understanding the physical principles governing these methods is a necessary prerequisite to assess their potential and limits and design relevant heuristics to manage the latter.

REFERENCES

  • Abubakar, A., W. Hu, T. M. Habashy, and P. M. van den Berg, 2009, Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data: Geophysics, 74, no. 6, WCC47–WCC58, doi: 10.1190/1.3250203.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Abubakar, A., W. Hu, P. M. van den Berg, and T. M. Habashy, 2008, A finite-difference contrast source inversion method: Inverse Problems, 24, 065004–17, doi: 10.1088/0266-5611/24/6/065004.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Abubakar, A., G. Pan, M. Li, L. Zhang, T. M. Habashy, and P. van den Berg, 2011, Three-dimensional seismic full-waveform inversion using the finite-difference contrast source inversion method: Geophysical Prospecting, 59, 874–888, doi: 10.1111/j.1365-2478.2011.00953.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, K. Aghazade, M. Sonbolestan, and S. Operto, 2022, Large-scale highly-accurate extended full-waveform inversion using convergent Born series: arXiv preprint, doi: 10.48550/arXiv.2202.08558.CrossrefGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2019a, ADMM-based multi-parameter wavefield reconstruction inversion in VTI acoustic media with TV regularization: Geophysical Journal International, 219, 1316–1333, doi: 10.1093/gji/ggz369.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2019b, Implementing bound constraints and total-variation regularization in extended full waveform inversion with the alternating direction method of multiplier: Application to large contrast media: Geophysical Journal International, 218, 855–872, doi: 10.1093/gji/ggz189.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2019c, Improving full-waveform inversion by wavefield reconstruction with alternating direction method of multipliers: Geophysics, 84, no. 1, R139–R162, doi: 10.1190/geo2018-0093.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2020a, Compound regularization of full-waveform inversion for imaging piecewise media: IEEE Transactions on Geoscience and Remote Sensing, 58, 1192–1204, doi: 10.1109/TGRS.2019.2944464.IGRSD20196-2892CrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2020b, Multi-parameter wavefield reconstruction inversion for wavespeed and attenuation with bound constraints and total variation regularization: Geophysics, 85, no. 4, R381–R396, doi: 10.1190/geo2019-0596.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2020c, Robust wavefield inversion with phase retrieval: Geophysical Journal International, 221, 1327–1340, doi: 10.1093/gji/ggaa035.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2021a, Complex-valued imaging with total variation regularization: An application to full-waveform inversion in visco-acoustic: SIAM Journal on Imaging Sciences, 14, 58–91, doi: 10.1137/20M1344780.CrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2021b, Dual variable compression: Remedy the memory issue of full-space approaches for full-waveform inversion: 91st Annual International Meeting, SEG, Expanded Abstracts, 772–776, doi: 10.1190/segam2021-3583112.1.AbstractGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2021c, Full waveform inversion by proximal Newton methods using adaptive regularization: Geophysical Journal International, 224, 169–180, doi: 10.1093/gji/ggaa434.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aghamiry, H., A. Gholami, and S. Operto, 2021d, On efficient frequency-domain full-waveform inversion with extended search space: Geophysics, 86, no. 2, R237–R252, doi: 10.1190/geo2020-0478.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Aghamiry, H. S., F. W. Mamfoumbi-Ozoumet, A. Gholami, and S. Operto, 2021e, Efficient extended-search space full-waveform inversion with unknown source signatures: Geophysical Journal International, 227, 257–274, doi: 10.1093/gji/ggab202.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aghazade, K., A. Gholami, H. Aghamiry, and S. Operto, 2022a, Anderson accelerated augmented Lagrangian for extended waveform inversion: Geophysics, 87, no. 1, R79–R91, doi: 10.1190/geo2021-0409.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Aghazade, K., A. Gholami, H. Aghamiry, and S. Operto, 2022b, Randomized source sketching for full waveform inversion: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, doi: 10.1109/TGRS.2021.3131039.IGRSD20196-2892CrossrefWeb of ScienceGoogle Scholar
  • Amestoy, P., R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto, 2016, Fast 3D frequency-domain FWI with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea: Geophysics, 81, no. 6, R363–R383, doi: 10.1190/geo2016-0052.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Amestoy, P., A. Buttari, J. Y. L’Excellent, and T. Mary, 2018, On exploiting sparsity of multiple right-hand sides in sparse direct solvers: SIAM Journal on Scientific Computing, 41, A269–A291, doi: 10.1137/17M1151882.SJOCE31064-8275CrossrefWeb of ScienceGoogle Scholar
  • Anderson, J. E., L. Tan, and D. Wang, 2012, Time-reversal checkpointing methods for RTM and FWI: Geophysics, 77, no. 4, S93–S103, doi: 10.1190/geo2011-0114.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Baek, H., H. Calandra, and L. Demanet, 2014, Velocity estimation via registration-guided least-squares inversion: Geophysics, 79, no. 2, R79–R89, doi: 10.1190/geo2013-0146.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Baeten, G., J. W. de Maag, R.-E. Plessix, R. Klaassen, T. Qureshi, M. Kleemeyer, F. ten Kroode, and Z. Rujie, 2013, The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study: Geophysical Prospecting, 61, 701–711, doi: 10.1111/1365-2478.12010.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Banerjee, B., T. F. Walsh, W. Aquino, and M. Bonnet, 2013, Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional: Computational Methods in Applied Mechanics Engineering, 253, 60–72, doi: 10.1016/j.cma.2012.08.023.CrossrefWeb of ScienceGoogle Scholar
  • Barnier, G., E. Biondi, R. G. Clapp, and B. Biondi, 2023a, Full-waveform inversion by model extension: Theory, design, and optimization: Geophysics, 88, no. 5, R579–R609, doi: 10.1190/geo2022-0350.1.AbstractGoogle Scholar
  • Barnier, G., E. Biondi, R. G. Clapp, and B. Biondi, 2023b, Full-waveform inversion by model extension: Practical applications: Geophysics, 88, no. 5, R609–R643, doi: 10.1190/geo2022-0382.1.AbstractGoogle Scholar
  • Biondi, B., and A. Almomin, 2014, Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion: Geophysics, 79, no. 3, WA129–WA140, doi: 10.1190/geo2013-0340.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Borcea, L., J. Garnier, A. V. Mamonov, and J. Zimmerling, 2023, Waveform inversion via reduced order modeling: Geophysics, 88, no. 2, R175–R191, doi: 10.1190/geo2022-0070.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Brandsberg-Dahl, S., N. Chemingui, A. Valenciano, J. Ramos-Martinez, and L. Qiu, 2017, FWI for model updates in large-contrast media: The Leading Edge, 36, 81–87, doi: 10.1190/tle36010081.1.AbstractGoogle Scholar
  • Brenders, A., J. Dellinger, I. Ahmed, E. Díaz, M. Gherasim, H. Jin, M. Vyas, and J. Naranjo, 2022, The Wolfspar experience with low-frequency seismic source field data: Motivation, processing, and implications: The Leading Edge, 41, 9–18, doi: 10.1190/tle41010010.1.AbstractGoogle Scholar
  • G. ChaventP. C. Sabatier, eds., 1996, Inverse problems of wave propagation and diffraction: Proceedings of the Conference Held in Aix-les-Bains, Springer.Google Scholar
  • Dellinger, J., A. J. Brenders, J. R. Sandschaper, C. Regone, J. Etgen, I. Ahmed, and K. J. Lee, 2017, The Garden Banks model experience: The Leading Edge, 36, 151–158, doi: 10.1190/tle36020151.1.AbstractGoogle Scholar
  • Diekmann, L., I. Vasconcelos, and T. van Leeuwen, 2023, A note on Marchenko-linearised full waveform inversion for imaging: Geophysical Journal International, 234, 228–242, doi: 10.1093/gji/ggad066.CrossrefWeb of ScienceGoogle Scholar
  • Duff, I. S., A. M. Erisman, and J. K. Reid, 1986, Direct methods for sparse matrices, 2nd ed.: Oxford Science Publications.Google Scholar
  • Engquist, B., B. D. Froese, and Y. Yang, 2016, Optimal transport for seismic full waveform inversion: Communications in Mathematical Sciences, 14, 2309–2330, doi: 10.4310/CMS.2016.v14.n8.a9.1539-6746CrossrefWeb of ScienceGoogle Scholar
  • Epanomeritakis, I., V. Akcelik, O. Ghattas, and J. Bielak, 2008, A Newton-CG method for large-scale three-dimensional elastic full waveform seismic inversion: Inverse Problems, 24, 034015–26, doi: 10.1088/0266-5611/24/3/034015.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Esser, E., L. Guasch, F. Herrmann, and M. Warner, 2016, Constrained waveform inversion for automatic salt flooding: The Leading Edge, 35, 235–239, doi: 10.1190/tle35030235.1.AbstractGoogle Scholar
  • Esser, E., L. Guasch, T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, 2018, Total variation regularization strategies in full-waveform inversion: SIAM Journal Imaging Sciences, 11, 376–406, doi: 10.1137/17M111328X.CrossrefWeb of ScienceGoogle Scholar
  • Fang, Z., R. Wang, and F. J. Herrmann, 2018, Source estimation for wavefield-reconstruction inversion: Geophysics, 83, no. 4, R345–R359, doi: 10.1190/geo2017-0700.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Farshad, M., and H. Chauris, 2021, Accelerating the multi-parameter least-squares reverse time migration using an appropriate preconditioner: Computational Geosciences, 25, 2071–2092, doi: 10.1007/s10596-021-10089-4.CrossrefWeb of ScienceGoogle Scholar
  • Fu, L., and W. W. Symes, 2017, A discrepancy-based penalty method for extended waveform inversion: Geophysics, 82, no. 5, R282–R298, doi: 10.1190/geo2016-0326.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gauthier, O., J. Virieux, and A. Tarantola, 1986, Two-dimensional nonlinear inversion of seismic waveforms: Numerical results: Geophysics, 51, 1387–1403, doi: 10.1190/1.1442188.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Geng, Y., W. Pan, and K. A. Innanen, 2018, Frequency-domain full-waveform inversion with non-linear descent directions: Geophysical Journal International, 213, 739–756, doi: 10.1093/gji/ggy002.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Gholami, A., H. Aghamiry, and S. Operto, 2021, A data reconstruction inversion approach to extended FWI: 91st Annual International Meeting, SEG, Expanded Abstracts, 807–811, doi: 10.1190/segam2021-3594635.1.AbstractGoogle Scholar
  • Gholami, A., H. S. Aghamiry, and S. Operto, 2022, Extended full waveform inversion in the time domain by the augmented Lagrangian method: Geophysics, 87, no. 1, R63–R77, doi: 10.1190/geo2021-0186.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Goldstein, T., and S. Osher, 2009, The split Bregman method for L1-regularized problems: SIAM Journal on Imaging Sciences, 2, 323–343, doi: 10.1137/080725891.CrossrefWeb of ScienceGoogle Scholar
  • Golub, G., and V. Pereyra, 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19, R1, doi: 10.1088/0266-5611/19/2/201.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Górszczyk, A., S. Operto, and M. Malinowski, 2017, Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern Nankai trough revisited: Journal of Geophysical Research: Solid Earth, 122, 4601–4630, doi: 10.1002/2016JB013891.CrossrefWeb of ScienceGoogle Scholar
  • Guo, G., S. Operto, and H. S. Aghamiry, 2023a, Time domain full waveform inversion with decomposed Gauss-Newton Hessian: 85th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202310492.CrossrefGoogle Scholar
  • Guo, G., S. Operto, H. S. Aghamiry, and A. Gholami, 2023b, Weighted time-domain extended-source full waveform inversion with layer stripping: 85th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202310498.CrossrefGoogle Scholar
  • Guo, G., S. Operto, A. Gholami, and H. S. Aghamiry, 2022a, Approximate data-domain Hessian in extended-source time-domain full waveform inversion using matching filter and conjugate gradient method: 84th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202210622.CrossrefGoogle Scholar
  • Guo, G., S. Operto, A. Gholami, and H. S. Aghamiry, 2022b, A practical implementation of data-space Hessian in the time-domain formulation of source extended full-waveform inversion: Second International Meeting for Applied Geoscience & Energy, SEG, Expanded Abstracts, 757–761, doi: 10.1190/image2022-3749861.1.AbstractGoogle Scholar
  • Guo, G., S. Operto, A. Gholami, and H. S. Aghamiry, 2023c, A practical implementation of data-space Hessian in the time-domain extended-source full-waveform inversion: arXiv preprint, doi: 10.48550/arXiv.2303.01009.CrossrefGoogle Scholar
  • Haber, E., U. M. Ascher, and D. Oldenburg, 2000, On optimization techniques for solving nonlinear inverse problems: Inverse Problems, 16, 1263, doi: 10.1088/0266-5611/16/5/309.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Hajjaj, R. F., S. A. de Ridder, P. W. Livermore, and M. Ravasi, 2022, Wavefield reconstruction inversion modelling of Marchenko focusing functions: arXiv preprint, doi: 10.48550/arXiv.2210.14570.CrossrefGoogle Scholar
  • Hou, J., and W. W. Symes, 2016, Accelerating extended least-squares migration with weighted conjugate gradient iteration: Geophysics, 81, no. 4, S165–S179, doi: 10.1190/geo2015-0499.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Huang, G., R. Nammour, and W. W. Symes, 2018a, Source-independent extended waveform inversion based on space-time source extension: Frequency-domain implementation: Geophysics, 83, no. 5, R449–R461, doi: 10.1190/geo2017-0333.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Huang, G., R. Nammour, and W. W. Symes, 2018b, Volume source-based extended waveform inversion: Geophysics, 83, no. 5, R369–R387, doi: 10.1190/geo2017-0330.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Jakobsen, M., and B. Ursin, 2015, Full waveform inversion in the frequency domain using direct iterative T-matrix methods: Journal of Geophysical Engineering, 12, 400–418, doi: 10.1088/1742-2132/12/3/400.CrossrefWeb of ScienceGoogle Scholar
  • Jakobsen, M., and R. S. Wu, 2016, Renormalized scattering series for frequency-domain waveform modelling of strong velocity contrasts: Geophysical Journal International, 206, 880–899, doi: 10.1093/gji/ggw169.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Jin, S., R. Madariaga, J. Virieux, and G. Lambaré, 1992, Two-dimensional asymptotic iterative elastic inversion: Geophysical Journal International, 108, 575–588, doi: 10.1111/j.1365-246X.1992.tb04637.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Jolivet, P., and P. H. Tournier, 2016, Block iterative methods and recycling for improved scalability of linear solvers: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, 190–203.CrossrefGoogle Scholar
  • Kalita, M., V. Kazei, Y. Choi, and T. Alkhalifah, 2019, Regularized full-waveform inversion with automated salt-flooding: Geophysics, 84, no. 4, R569–R582, doi: 10.1190/geo2018-0146.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lee, D., and S. Pyun, 2020, Seismic full-waveform inversion using minimization of virtual scattering sources: Geophysics, 85, no. 3, R299–R311, doi: 10.1190/geo2019-0533.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lin, Y., H. Liu, L. Xing, and H. Lin, 2022, Time-domain wavefield reconstruction inversion solutions in the weighted full waveform inversion form: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14, doi: 10.1109/TGRS.2022.3224383.IGRSD20196-2892CrossrefWeb of ScienceGoogle Scholar
  • Liu, Q., and J. Tromp, 2006, Finite-frequency kernels based on adjoint methods: Bulletin of the Seismological Society of America, 96, 2383–2397, doi: 10.1785/0120060041.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Ma, Y., and D. Hale, 2013, Wave-equation reflection traveltime inversion with dynamic warping and full waveform inversion: Geophysics, 78, no. 6, R223–R233, doi: 10.1190/geo2013-0004.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Menke, W., 2012, Geophysical data analysis: Discrete inverse theory: Academic Press, 45.Google Scholar
  • Métivier, L., A. Allain, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, 2018, Optimal transport for mitigating cycle skipping in full waveform inversion: A graph space transform approach: Geophysics, 83, no. 5, R515–R540, doi: 10.1190/geo2017-0807.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Métivier, L., R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, 2016, An optimal transport approach for seismic tomography: Application to 3D full waveform inversion: Inverse Problems, 32, 115008, doi: 10.1088/0266-5611/32/11/115008.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Métivier, L., R. Brossier, and J. Virieux, 2015, Combining asymptotic linearized inversion and full waveform inversion: Geophysical Journal International, 201, 1682–1703, doi: 10.1093/gji/ggv106.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Miller, D., M. Oristaglio, and G. Beylkin, 1987, A new slant on seismic imaging: Migration and integral geometry: Geophysics, 52, 943–964, doi: 10.1190/1.1442364.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mora, P. R., 1987, Nonlinear two-dimensional elastic inversion of multi-offset seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mulder, W., and R. E. Plessix, 2008, Exploring some issues in acoustic full waveform inversion: Geophysical Prospecting, 56, 827–841, doi: 10.1111/j.1365-2478.2008.00708.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Nocedal, J., and S. J. Wright, 2006, Numerical optimization, 2nd ed.: Springer.CrossrefGoogle Scholar
  • Operto, S., P. Amestoy, H. Aghamiry, A. Buttari, L. Combe, V. Dolean, M. Gerest, G. Guo, P. Jolivet, F. Mamfoumbi, T. Mary, C. Puglisi, A. Ribodetti, and P.-H. Tournier, 2023, Is 3D frequency-domain FWI of full-azimuth/long-offset OBN data feasible? The Gorgon-data FWI case study: The Leading Edge, 42, 173–183, doi: 10.1190/tle42030173.1.AbstractGoogle Scholar
  • Operto, S., and A. Miniussi, 2018, On the role of density and attenuation in 3D multi-parameter visco-acoustic VTI frequency-domain FWI: An OBC case study from the North Sea: Geophysical Journal International, 213, 2037–2059, doi: 10.1093/gji/ggy103.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Operto, S., A. Miniussi, R. Brossier, L. Combe, L. Métivier, V. Monteiller, A. Ribodetti, and J. Virieux, 2015, Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: Application to Valhall in the visco-acoustic vertical transverse isotropic approximation: Geophysical Journal International, 202, 1362–1391, doi: 10.1093/gji/ggv226.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Parikh, N., and S. Boyd, 2013, Proximal algorithms: Foundations and Trends in Optimization, 1, 123–231, doi: 10.1561/2400000003.CrossrefGoogle Scholar
  • Peters, B., and F. J. Herrmann, 2019, A numerical solver for least-squares sub-problems in 3D wavefield reconstruction inversion and related problem formulations: 89th Annual International Meeting, SEG, Expanded Abstracts, 1536–1540, doi: 10.1190/segam2019-3216638.1.AbstractGoogle Scholar
  • Pratt, R. G., C. Shin, and G. J. Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998.00498.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Prunty, A. C., and R. K. Snieder, 2020, An acoustic Lippmann-Schwinger inversion method: Applications and comparison with the linear sampling method: Journal of Physics Communications, 4, 015007–14, doi: 10.1088/2399-6528/ab6570.CrossrefWeb of ScienceGoogle Scholar
  • Rizzuti, G., M. Louboutin, R. Wang, and F. J. Herrmann, 2021, A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion: Geophysics, 86, no. 6, R879–R893, doi: 10.1190/geo2020-0743.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ruhe, A., and P. Wedin, 1980, Algorithms for separable nonlinear least-squares problems: SIAM Review, 22, 318–337, doi: 10.1137/1022057.SIREAD0036-1445CrossrefWeb of ScienceGoogle Scholar
  • Sambolian, S., A. Gorszczyk, S. Operto, A. Ribodetti, and B. Tavakoli, 2021, Mitigating the ill-posedness of first-arrival traveltime tomography with slopes: Application to the eastern Nankai Trough OBS dataset (Japan): Geophysical Journal International, 227, 898–921, doi: 10.1093/gji/ggab262.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Sambolian, S., S. Operto, A. Ribodetti, and J. Virieux, 2020, From slope tomography to FWI: Is the conventional workflow viable in complex settings? 90th Annual International Meeting, SEG, Expanded Abstracts, 890–894, doi: 10.1190/segam2020-3428063.1.AbstractGoogle Scholar
  • Schneider, W. A., 1978, Integral formulation for migration in two and three dimensions: Geophysics, 43, 49–76, doi: 10.1190/1.1440828.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Shin, C., S. Jang, and D. J. Min, 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory: Geophysical Prospecting, 49, 592–606, doi: 10.1046/j.1365-2478.2001.00279.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sirgue, L., O. I. Barkved, J. Dellinger, J. Etgen, U. Albertin, and J. H. Kommedal, 2010, Full waveform inversion: The next leap forward in imaging at Valhall: First Break, 28, 65–70, doi: 10.3997/1365-2397.2010012.CrossrefGoogle Scholar
  • Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, 72, no. 5, SM213–SM221, doi: 10.1190/1.2742686.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Symes, W. W., 2008a, Approximate linearized inversion by optimal scaling of prestack depth migration: Geophysics, 73, no. 2, R23–R35, doi: 10.1190/1.2836323.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Symes, W. W., 2008b, Migration velocity analysis and waveform inversion: Geophysical Prospecting, 56, 765–790, doi: 10.1111/j.1365-2478.2008.00698.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Symes, W. W., 2020a, Wavefield reconstruction inversion: An example: arXiv preprint, doi: 10.48550/arXiv.2003.14181.CrossrefGoogle Scholar
  • Symes, W. W., 2020b, Wavefield reconstruction inversion: An example: Inverse Problems, 36, 105010, doi: 10.1088/1361-6420/abaf66.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Symes, W. W., 2022, Error bounds for extended source inversion applied to an acoustic transmission inverse problem: Inverse Problems, 38, 115002, doi: 10.1088/1361-6420/ac8cac.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Symes, W. W., H. Chen, and S. Minkoff, 2022, Solution of an acoustic transmission inverse problem by extended inversion: Inverse Problems, 38, 115003, doi: 10.1088/1361-6420/ac8c8c.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.CrossrefGoogle Scholar
  • Tarantola, A., and B. Valette, 1982, Generalized nonlinear inverse problems solved using the least square criterion: Reviews of Geophysical and Space Physics, 20, 219–232, doi: 10.1029/RG020i002p00219.CrossrefGoogle Scholar
  • ten Kroode, F., 2012, A wave-equation-based Kirchhoff operator: Inverse Problems, 28, 115013, doi: 10.1088/0266-5611/28/11/115013.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Tournier, P.-H., P. Jolivet, V. Dolean, H. Aghamiry, S. Operto, and S. Riffo, 2022, Three-dimensional finite-difference and finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: A tool for FWI of sparse node datasets: Geophysics, 87, no. 5, T381–T402, doi: 10.1190/geo2021-0702.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • van den Berg, P. M., and R. E. Kleinman, 1997, A contrast source inversion method: Inverse Problems, 13, 1607, doi: 10.1088/0266-5611/13/6/013.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • van Leeuwen, T., 2019, A note on extended full waveform inversion: arXiv preprint, doi: 10.48550/arXiv.1904.00363.CrossrefGoogle Scholar
  • van Leeuwen, T., and F. Herrmann, 2016, A penalty method for PDE-constrained optimization in inverse problems: Inverse Problems, 32, 1–26, doi: 10.1088/0266-5611/32/1/015007.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • van Leeuwen, T., F. Herrmann, and B. Peters, 2014, A new take on FWI-wavefield reconstruction inversion: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20140703.CrossrefGoogle Scholar
  • van Leeuwen, T., and F. J. Herrmann, 2013, Mitigating local minima in full-waveform inversion by expanding the search space: Geophysical Journal International, 195, 661–667, doi: 10.1093/gji/ggt258.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wang, C., D. Yingst, P. Farmer, I. Jones, G. Martin, and J. Leveille, 2017, Reconstructed full-waveform inversion with the extended source: 87th Annual International Meeting, SEG, Expanded Abstracts, 1449–1453, doi: 10.1190/segam2017-17736054.1.AbstractGoogle Scholar
  • Wang, C., D. Yingst, P. Farmer, and J. Leveille, 2016, Full-waveform inversion with the reconstructed wavefield method: 86th Annual International Meeting, SEG, Expanded Abstracts, 1237–1241, doi: 10.1190/segam2016-13870317.1.AbstractGoogle Scholar
  • Warner, M., and L. Guasch, 2016, Adaptive waveform inversion: Theory: Geophysics, 81, no. 6, R429–R445, doi: 10.1190/geo2015-0387.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Warner, M., T. Nangoo, A. Umpleby, N. Shah, C. Manuel, D. Bevc, M. Merino, M. Jakobsen, and R. S. Wu, 2023, Automated salt model building: From compaction trend to final velocity model using waveform inversion: The Leading Edge, 42, 196–206, doi: 10.1190/tle42030196.1.AbstractGoogle Scholar
  • Yang, Y., B. Engquist, J. Sun, and B. F. Hamfeldt, 2018, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion: Geophysics, 83, no. 1, R43–R62, doi: 10.1190/geo2016-0663.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Yao, G., N. V. da Silva, M. Warner, D. Wu, and C. Yang, 2019, Tackling cycle skipping in full-waveform inversion with intermediate data: Geophysics, 84, no. 3, R411–R427, doi: 10.1190/geo2018-0096.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zelt, C. A., 1999, Modelling strategies and model assessment for wide-angle seismic traveltime data: Geophysical Journal International, 139, 183–204, doi: 10.1046/j.1365-246X.1999.00934.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar