This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Extending the search space of full-waveform inversion beyond the single-scattering Born approximation: A tutorial review

Authors:

Full-waveform inversion (FWI) can be made immune to cycle skipping by matching the recorded data with traveltime errors smaller than one-half period from inaccurate subsurface models. To achieve this goal, the simulated wavefields can be computed in an extended search space as the solution of an overdetermined problem aimed at jointly satisfying the wave equation and fitting the data in a least-squares sense. This leads to data-assimilated wavefields that are computed by solving the wave equation in the inaccurate background model with a data-dependent source extension added to the source term. Then, the subsurface parameters are updated by canceling out these additional source terms, sometimes inaccurately called wave equation errors, to push the background model toward the true model in the left-side wave equation operator. Although many studies are devoted to these approaches with promising numerical results, their governing physical principles and their relationships with classical FWI do not seem to be understood well yet. The goal of this tutorial is to review these principles in the framework of inverse scattering theory whose governing forward equation is the Lippmann-Schwinger equation. From this equation, we find how the data-assimilated wavefields embed an approximation of the scattered field generated by the sought model perturbation and how they modify the sensitivity kernel of classical FWI beyond the Born approximation. We also clarify how the approximation with which these wavefields approximate the unknown true wavefields is accounted for in the adjoint source and in the full Newton Hessian of the parameter-estimation problem. The theory is finally illustrated with numerical examples. Understanding the physical principles governing these methods is a necessary prerequisite to assess their potential and limits and design relevant heuristics to manage the latter.

REFERENCES

  • Abubakar, A., W. Hu, T. M. Habashy, and P. M. van den Berg, 2009, Application of the finite-difference contrast-source inversion algorithm to seismic full-waveform data: Geophysics, 74, no. 6, WCC47–WCC58, doi: 10.1190/1.3250203.GPYSA70016-8033
  • Abubakar, A., W. Hu, P. M. van den Berg, and T. M. Habashy, 2008, A finite-difference contrast source inversion method: Inverse Problems, 24, 065004–17, doi: 10.1088/0266-5611/24/6/065004.INPEEY0266-5611
  • Abubakar, A., G. Pan, M. Li, L. Zhang, T. M. Habashy, and P. van den Berg, 2011, Three-dimensional seismic full-waveform inversion using the finite-difference contrast source inversion method: Geophysical Prospecting, 59, 874–888, doi: 10.1111/j.1365-2478.2011.00953.x.GPPRAR0016-8025
  • Aghamiry, H., A. Gholami, K. Aghazade, M. Sonbolestan, and S. Operto, 2022, Large-scale highly-accurate extended full-waveform inversion using convergent Born series: arXiv preprint, doi: 10.48550/arXiv.2202.08558.
  • Aghamiry, H., A. Gholami, and S. Operto, 2019a, ADMM-based multi-parameter wavefield reconstruction inversion in VTI acoustic media with TV regularization: Geophysical Journal International, 219, 1316–1333, doi: 10.1093/gji/ggz369.GJINEA0956-540X
  • Aghamiry, H., A. Gholami, and S. Operto, 2019b, Implementing bound constraints and total-variation regularization in extended full waveform inversion with the alternating direction method of multiplier: Application to large contrast media: Geophysical Journal International, 218, 855–872, doi: 10.1093/gji/ggz189.GJINEA0956-540X
  • Aghamiry, H., A. Gholami, and S. Operto, 2019c, Improving full-waveform inversion by wavefield reconstruction with alternating direction method of multipliers: Geophysics, 84, no. 1, R139–R162, doi: 10.1190/geo2018-0093.1.GPYSA70016-8033
  • Aghamiry, H., A. Gholami, and S. Operto, 2020a, Compound regularization of full-waveform inversion for imaging piecewise media: IEEE Transactions on Geoscience and Remote Sensing, 58, 1192–1204, doi: 10.1109/TGRS.2019.2944464.IGRSD20196-2892
  • Aghamiry, H., A. Gholami, and S. Operto, 2020b, Multi-parameter wavefield reconstruction inversion for wavespeed and attenuation with bound constraints and total variation regularization: Geophysics, 85, no. 4, R381–R396, doi: 10.1190/geo2019-0596.1.GPYSA70016-8033
  • Aghamiry, H., A. Gholami, and S. Operto, 2020c, Robust wavefield inversion with phase retrieval: Geophysical Journal International, 221, 1327–1340, doi: 10.1093/gji/ggaa035.GJINEA0956-540X
  • Aghamiry, H., A. Gholami, and S. Operto, 2021a, Complex-valued imaging with total variation regularization: An application to full-waveform inversion in visco-acoustic: SIAM Journal on Imaging Sciences, 14, 58–91, doi: 10.1137/20M1344780.
  • Aghamiry, H., A. Gholami, and S. Operto, 2021b, Dual variable compression: Remedy the memory issue of full-space approaches for full-waveform inversion: 91st Annual International Meeting, SEG, Expanded Abstracts, 772–776, doi: 10.1190/segam2021-3583112.1.
  • Aghamiry, H., A. Gholami, and S. Operto, 2021c, Full waveform inversion by proximal Newton methods using adaptive regularization: Geophysical Journal International, 224, 169–180, doi: 10.1093/gji/ggaa434.GJINEA0956-540X
  • Aghamiry, H., A. Gholami, and S. Operto, 2021d, On efficient frequency-domain full-waveform inversion with extended search space: Geophysics, 86, no. 2, R237–R252, doi: 10.1190/geo2020-0478.1.GPYSA70016-8033
  • Aghamiry, H. S., F. W. Mamfoumbi-Ozoumet, A. Gholami, and S. Operto, 2021e, Efficient extended-search space full-waveform inversion with unknown source signatures: Geophysical Journal International, 227, 257–274, doi: 10.1093/gji/ggab202.GJINEA0956-540X
  • Aghazade, K., A. Gholami, H. Aghamiry, and S. Operto, 2022a, Anderson accelerated augmented Lagrangian for extended waveform inversion: Geophysics, 87, no. 1, R79–R91, doi: 10.1190/geo2021-0409.1.GPYSA70016-8033
  • Aghazade, K., A. Gholami, H. Aghamiry, and S. Operto, 2022b, Randomized source sketching for full waveform inversion: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, doi: 10.1109/TGRS.2021.3131039.IGRSD20196-2892
  • Amestoy, P., R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto, 2016, Fast 3D frequency-domain FWI with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea: Geophysics, 81, no. 6, R363–R383, doi: 10.1190/geo2016-0052.1.GPYSA70016-8033
  • Amestoy, P., A. Buttari, J. Y. L’Excellent, and T. Mary, 2018, On exploiting sparsity of multiple right-hand sides in sparse direct solvers: SIAM Journal on Scientific Computing, 41, A269–A291, doi: 10.1137/17M1151882.SJOCE31064-8275
  • Anderson, J. E., L. Tan, and D. Wang, 2012, Time-reversal checkpointing methods for RTM and FWI: Geophysics, 77, no. 4, S93–S103, doi: 10.1190/geo2011-0114.1.GPYSA70016-8033
  • Baek, H., H. Calandra, and L. Demanet, 2014, Velocity estimation via registration-guided least-squares inversion: Geophysics, 79, no. 2, R79–R89, doi: 10.1190/geo2013-0146.1.GPYSA70016-8033
  • Baeten, G., J. W. de Maag, R.-E. Plessix, R. Klaassen, T. Qureshi, M. Kleemeyer, F. ten Kroode, and Z. Rujie, 2013, The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study: Geophysical Prospecting, 61, 701–711, doi: 10.1111/1365-2478.12010.GPPRAR0016-8025
  • Banerjee, B., T. F. Walsh, W. Aquino, and M. Bonnet, 2013, Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional: Computational Methods in Applied Mechanics Engineering, 253, 60–72, doi: 10.1016/j.cma.2012.08.023.
  • Barnier, G., E. Biondi, R. G. Clapp, and B. Biondi, 2023a, Full-waveform inversion by model extension: Theory, design, and optimization: Geophysics, 88, no. 5, R579–R609, doi: 10.1190/geo2022-0350.1.
  • Barnier, G., E. Biondi, R. G. Clapp, and B. Biondi, 2023b, Full-waveform inversion by model extension: Practical applications: Geophysics, 88, no. 5, R609–R643, doi: 10.1190/geo2022-0382.1.
  • Biondi, B., and A. Almomin, 2014, Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion: Geophysics, 79, no. 3, WA129–WA140, doi: 10.1190/geo2013-0340.1.GPYSA70016-8033
  • Borcea, L., J. Garnier, A. V. Mamonov, and J. Zimmerling, 2023, Waveform inversion via reduced order modeling: Geophysics, 88, no. 2, R175–R191, doi: 10.1190/geo2022-0070.1.GPYSA70016-8033
  • Brandsberg-Dahl, S., N. Chemingui, A. Valenciano, J. Ramos-Martinez, and L. Qiu, 2017, FWI for model updates in large-contrast media: The Leading Edge, 36, 81–87, doi: 10.1190/tle36010081.1.
  • Brenders, A., J. Dellinger, I. Ahmed, E. Díaz, M. Gherasim, H. Jin, M. Vyas, and J. Naranjo, 2022, The Wolfspar experience with low-frequency seismic source field data: Motivation, processing, and implications: The Leading Edge, 41, 9–18, doi: 10.1190/tle41010010.1.
  • G. ChaventP. C. Sabatier, eds., 1996, Inverse problems of wave propagation and diffraction: Proceedings of the Conference Held in Aix-les-Bains, Springer.
  • Dellinger, J., A. J. Brenders, J. R. Sandschaper, C. Regone, J. Etgen, I. Ahmed, and K. J. Lee, 2017, The Garden Banks model experience: The Leading Edge, 36, 151–158, doi: 10.1190/tle36020151.1.
  • Diekmann, L., I. Vasconcelos, and T. van Leeuwen, 2023, A note on Marchenko-linearised full waveform inversion for imaging: Geophysical Journal International, 234, 228–242, doi: 10.1093/gji/ggad066.
  • Duff, I. S., A. M. Erisman, and J. K. Reid, 1986, Direct methods for sparse matrices, 2nd ed.: Oxford Science Publications.
  • Engquist, B., B. D. Froese, and Y. Yang, 2016, Optimal transport for seismic full waveform inversion: Communications in Mathematical Sciences, 14, 2309–2330, doi: 10.4310/CMS.2016.v14.n8.a9.1539-6746
  • Epanomeritakis, I., V. Akcelik, O. Ghattas, and J. Bielak, 2008, A Newton-CG method for large-scale three-dimensional elastic full waveform seismic inversion: Inverse Problems, 24, 034015–26, doi: 10.1088/0266-5611/24/3/034015.INPEEY0266-5611
  • Esser, E., L. Guasch, F. Herrmann, and M. Warner, 2016, Constrained waveform inversion for automatic salt flooding: The Leading Edge, 35, 235–239, doi: 10.1190/tle35030235.1.
  • Esser, E., L. Guasch, T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, 2018, Total variation regularization strategies in full-waveform inversion: SIAM Journal Imaging Sciences, 11, 376–406, doi: 10.1137/17M111328X.
  • Fang, Z., R. Wang, and F. J. Herrmann, 2018, Source estimation for wavefield-reconstruction inversion: Geophysics, 83, no. 4, R345–R359, doi: 10.1190/geo2017-0700.1.GPYSA70016-8033
  • Farshad, M., and H. Chauris, 2021, Accelerating the multi-parameter least-squares reverse time migration using an appropriate preconditioner: Computational Geosciences, 25, 2071–2092, doi: 10.1007/s10596-021-10089-4.
  • Fu, L., and W. W. Symes, 2017, A discrepancy-based penalty method for extended waveform inversion: Geophysics, 82, no. 5, R282–R298, doi: 10.1190/geo2016-0326.1.GPYSA70016-8033
  • Gauthier, O., J. Virieux, and A. Tarantola, 1986, Two-dimensional nonlinear inversion of seismic waveforms: Numerical results: Geophysics, 51, 1387–1403, doi: 10.1190/1.1442188.GPYSA70016-8033
  • Geng, Y., W. Pan, and K. A. Innanen, 2018, Frequency-domain full-waveform inversion with non-linear descent directions: Geophysical Journal International, 213, 739–756, doi: 10.1093/gji/ggy002.GJINEA0956-540X
  • Gholami, A., H. Aghamiry, and S. Operto, 2021, A data reconstruction inversion approach to extended FWI: 91st Annual International Meeting, SEG, Expanded Abstracts, 807–811, doi: 10.1190/segam2021-3594635.1.
  • Gholami, A., H. S. Aghamiry, and S. Operto, 2022, Extended full waveform inversion in the time domain by the augmented Lagrangian method: Geophysics, 87, no. 1, R63–R77, doi: 10.1190/geo2021-0186.1.GPYSA70016-8033
  • Goldstein, T., and S. Osher, 2009, The split Bregman method for L1-regularized problems: SIAM Journal on Imaging Sciences, 2, 323–343, doi: 10.1137/080725891.
  • Golub, G., and V. Pereyra, 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19, R1, doi: 10.1088/0266-5611/19/2/201.INPEEY0266-5611
  • Górszczyk, A., S. Operto, and M. Malinowski, 2017, Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern Nankai trough revisited: Journal of Geophysical Research: Solid Earth, 122, 4601–4630, doi: 10.1002/2016JB013891.
  • Guo, G., S. Operto, and H. S. Aghamiry, 2023a, Time domain full waveform inversion with decomposed Gauss-Newton Hessian: 85th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202310492.
  • Guo, G., S. Operto, H. S. Aghamiry, and A. Gholami, 2023b, Weighted time-domain extended-source full waveform inversion with layer stripping: 85th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202310498.
  • Guo, G., S. Operto, A. Gholami, and H. S. Aghamiry, 2022a, Approximate data-domain Hessian in extended-source time-domain full waveform inversion using matching filter and conjugate gradient method: 84th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.202210622.
  • Guo, G., S. Operto, A. Gholami, and H. S. Aghamiry, 2022b, A practical implementation of data-space Hessian in the time-domain formulation of source extended full-waveform inversion: Second International Meeting for Applied Geoscience & Energy, SEG, Expanded Abstracts, 757–761, doi: 10.1190/image2022-3749861.1.
  • Guo, G., S. Operto, A. Gholami, and H. S. Aghamiry, 2023c, A practical implementation of data-space Hessian in the time-domain extended-source full-waveform inversion: arXiv preprint, doi: 10.48550/arXiv.2303.01009.
  • Haber, E., U. M. Ascher, and D. Oldenburg, 2000, On optimization techniques for solving nonlinear inverse problems: Inverse Problems, 16, 1263, doi: 10.1088/0266-5611/16/5/309.INPEEY0266-5611
  • Hajjaj, R. F., S. A. de Ridder, P. W. Livermore, and M. Ravasi, 2022, Wavefield reconstruction inversion modelling of Marchenko focusing functions: arXiv preprint, doi: 10.48550/arXiv.2210.14570.
  • Hou, J., and W. W. Symes, 2016, Accelerating extended least-squares migration with weighted conjugate gradient iteration: Geophysics, 81, no. 4, S165–S179, doi: 10.1190/geo2015-0499.1.GPYSA70016-8033
  • Huang, G., R. Nammour, and W. W. Symes, 2018a, Source-independent extended waveform inversion based on space-time source extension: Frequency-domain implementation: Geophysics, 83, no. 5, R449–R461, doi: 10.1190/geo2017-0333.1.GPYSA70016-8033
  • Huang, G., R. Nammour, and W. W. Symes, 2018b, Volume source-based extended waveform inversion: Geophysics, 83, no. 5, R369–R387, doi: 10.1190/geo2017-0330.1.GPYSA70016-8033
  • Jakobsen, M., and B. Ursin, 2015, Full waveform inversion in the frequency domain using direct iterative T-matrix methods: Journal of Geophysical Engineering, 12, 400–418, doi: 10.1088/1742-2132/12/3/400.
  • Jakobsen, M., and R. S. Wu, 2016, Renormalized scattering series for frequency-domain waveform modelling of strong velocity contrasts: Geophysical Journal International, 206, 880–899, doi: 10.1093/gji/ggw169.GJINEA0956-540X
  • Jin, S., R. Madariaga, J. Virieux, and G. Lambaré, 1992, Two-dimensional asymptotic iterative elastic inversion: Geophysical Journal International, 108, 575–588, doi: 10.1111/j.1365-246X.1992.tb04637.x.GJINEA0956-540X
  • Jolivet, P., and P. H. Tournier, 2016, Block iterative methods and recycling for improved scalability of linear solvers: SC16: International Conference for High Performance Computing, Networking, Storage and Analysis, 190–203.
  • Kalita, M., V. Kazei, Y. Choi, and T. Alkhalifah, 2019, Regularized full-waveform inversion with automated salt-flooding: Geophysics, 84, no. 4, R569–R582, doi: 10.1190/geo2018-0146.1.GPYSA70016-8033
  • Lee, D., and S. Pyun, 2020, Seismic full-waveform inversion using minimization of virtual scattering sources: Geophysics, 85, no. 3, R299–R311, doi: 10.1190/geo2019-0533.1.GPYSA70016-8033
  • Lin, Y., H. Liu, L. Xing, and H. Lin, 2022, Time-domain wavefield reconstruction inversion solutions in the weighted full waveform inversion form: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14, doi: 10.1109/TGRS.2022.3224383.IGRSD20196-2892
  • Liu, Q., and J. Tromp, 2006, Finite-frequency kernels based on adjoint methods: Bulletin of the Seismological Society of America, 96, 2383–2397, doi: 10.1785/0120060041.BSSAAP0037-1106
  • Ma, Y., and D. Hale, 2013, Wave-equation reflection traveltime inversion with dynamic warping and full waveform inversion: Geophysics, 78, no. 6, R223–R233, doi: 10.1190/geo2013-0004.1.GPYSA70016-8033
  • Menke, W., 2012, Geophysical data analysis: Discrete inverse theory: Academic Press, 45.
  • Métivier, L., A. Allain, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, 2018, Optimal transport for mitigating cycle skipping in full waveform inversion: A graph space transform approach: Geophysics, 83, no. 5, R515–R540, doi: 10.1190/geo2017-0807.1.GPYSA70016-8033
  • Métivier, L., R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, 2016, An optimal transport approach for seismic tomography: Application to 3D full waveform inversion: Inverse Problems, 32, 115008, doi: 10.1088/0266-5611/32/11/115008.INPEEY0266-5611
  • Métivier, L., R. Brossier, and J. Virieux, 2015, Combining asymptotic linearized inversion and full waveform inversion: Geophysical Journal International, 201, 1682–1703, doi: 10.1093/gji/ggv106.GJINEA0956-540X
  • Miller, D., M. Oristaglio, and G. Beylkin, 1987, A new slant on seismic imaging: Migration and integral geometry: Geophysics, 52, 943–964, doi: 10.1190/1.1442364.GPYSA70016-8033
  • Mora, P. R., 1987, Nonlinear two-dimensional elastic inversion of multi-offset seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.GPYSA70016-8033
  • Mulder, W., and R. E. Plessix, 2008, Exploring some issues in acoustic full waveform inversion: Geophysical Prospecting, 56, 827–841, doi: 10.1111/j.1365-2478.2008.00708.x.GPPRAR0016-8025
  • Nocedal, J., and S. J. Wright, 2006, Numerical optimization, 2nd ed.: Springer.
  • Operto, S., P. Amestoy, H. Aghamiry, A. Buttari, L. Combe, V. Dolean, M. Gerest, G. Guo, P. Jolivet, F. Mamfoumbi, T. Mary, C. Puglisi, A. Ribodetti, and P.-H. Tournier, 2023, Is 3D frequency-domain FWI of full-azimuth/long-offset OBN data feasible? The Gorgon-data FWI case study: The Leading Edge, 42, 173–183, doi: 10.1190/tle42030173.1.
  • Operto, S., and A. Miniussi, 2018, On the role of density and attenuation in 3D multi-parameter visco-acoustic VTI frequency-domain FWI: An OBC case study from the North Sea: Geophysical Journal International, 213, 2037–2059, doi: 10.1093/gji/ggy103.GJINEA0956-540X
  • Operto, S., A. Miniussi, R. Brossier, L. Combe, L. Métivier, V. Monteiller, A. Ribodetti, and J. Virieux, 2015, Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: Application to Valhall in the visco-acoustic vertical transverse isotropic approximation: Geophysical Journal International, 202, 1362–1391, doi: 10.1093/gji/ggv226.GJINEA0956-540X
  • Parikh, N., and S. Boyd, 2013, Proximal algorithms: Foundations and Trends in Optimization, 1, 123–231, doi: 10.1561/2400000003.
  • Peters, B., and F. J. Herrmann, 2019, A numerical solver for least-squares sub-problems in 3D wavefield reconstruction inversion and related problem formulations: 89th Annual International Meeting, SEG, Expanded Abstracts, 1536–1540, doi: 10.1190/segam2019-3216638.1.
  • Pratt, R. G., C. Shin, and G. J. Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998.00498.x.GJINEA0956-540X
  • Prunty, A. C., and R. K. Snieder, 2020, An acoustic Lippmann-Schwinger inversion method: Applications and comparison with the linear sampling method: Journal of Physics Communications, 4, 015007–14, doi: 10.1088/2399-6528/ab6570.
  • Rizzuti, G., M. Louboutin, R. Wang, and F. J. Herrmann, 2021, A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion: Geophysics, 86, no. 6, R879–R893, doi: 10.1190/geo2020-0743.1.GPYSA70016-8033
  • Ruhe, A., and P. Wedin, 1980, Algorithms for separable nonlinear least-squares problems: SIAM Review, 22, 318–337, doi: 10.1137/1022057.SIREAD0036-1445
  • Sambolian, S., A. Gorszczyk, S. Operto, A. Ribodetti, and B. Tavakoli, 2021, Mitigating the ill-posedness of first-arrival traveltime tomography with slopes: Application to the eastern Nankai Trough OBS dataset (Japan): Geophysical Journal International, 227, 898–921, doi: 10.1093/gji/ggab262.GJINEA0956-540X
  • Sambolian, S., S. Operto, A. Ribodetti, and J. Virieux, 2020, From slope tomography to FWI: Is the conventional workflow viable in complex settings? 90th Annual International Meeting, SEG, Expanded Abstracts, 890–894, doi: 10.1190/segam2020-3428063.1.
  • Schneider, W. A., 1978, Integral formulation for migration in two and three dimensions: Geophysics, 43, 49–76, doi: 10.1190/1.1440828.GPYSA70016-8033
  • Shin, C., S. Jang, and D. J. Min, 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory: Geophysical Prospecting, 49, 592–606, doi: 10.1046/j.1365-2478.2001.00279.x.GPPRAR0016-8025
  • Sirgue, L., O. I. Barkved, J. Dellinger, J. Etgen, U. Albertin, and J. H. Kommedal, 2010, Full waveform inversion: The next leap forward in imaging at Valhall: First Break, 28, 65–70, doi: 10.3997/1365-2397.2010012.
  • Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, 72, no. 5, SM213–SM221, doi: 10.1190/1.2742686.GPYSA70016-8033
  • Symes, W. W., 2008a, Approximate linearized inversion by optimal scaling of prestack depth migration: Geophysics, 73, no. 2, R23–R35, doi: 10.1190/1.2836323.GPYSA70016-8033
  • Symes, W. W., 2008b, Migration velocity analysis and waveform inversion: Geophysical Prospecting, 56, 765–790, doi: 10.1111/j.1365-2478.2008.00698.x.GPPRAR0016-8025
  • Symes, W. W., 2020a, Wavefield reconstruction inversion: An example: arXiv preprint, doi: 10.48550/arXiv.2003.14181.
  • Symes, W. W., 2020b, Wavefield reconstruction inversion: An example: Inverse Problems, 36, 105010, doi: 10.1088/1361-6420/abaf66.INPEEY0266-5611
  • Symes, W. W., 2022, Error bounds for extended source inversion applied to an acoustic transmission inverse problem: Inverse Problems, 38, 115002, doi: 10.1088/1361-6420/ac8cac.INPEEY0266-5611
  • Symes, W. W., H. Chen, and S. Minkoff, 2022, Solution of an acoustic transmission inverse problem by extended inversion: Inverse Problems, 38, 115003, doi: 10.1088/1361-6420/ac8c8c.INPEEY0266-5611
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.
  • Tarantola, A., and B. Valette, 1982, Generalized nonlinear inverse problems solved using the least square criterion: Reviews of Geophysical and Space Physics, 20, 219–232, doi: 10.1029/RG020i002p00219.
  • ten Kroode, F., 2012, A wave-equation-based Kirchhoff operator: Inverse Problems, 28, 115013, doi: 10.1088/0266-5611/28/11/115013.INPEEY0266-5611
  • Tournier, P.-H., P. Jolivet, V. Dolean, H. Aghamiry, S. Operto, and S. Riffo, 2022, Three-dimensional finite-difference and finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: A tool for FWI of sparse node datasets: Geophysics, 87, no. 5, T381–T402, doi: 10.1190/geo2021-0702.1.GPYSA70016-8033
  • van den Berg, P. M., and R. E. Kleinman, 1997, A contrast source inversion method: Inverse Problems, 13, 1607, doi: 10.1088/0266-5611/13/6/013.INPEEY0266-5611
  • van Leeuwen, T., 2019, A note on extended full waveform inversion: arXiv preprint, doi: 10.48550/arXiv.1904.00363.
  • van Leeuwen, T., and F. Herrmann, 2016, A penalty method for PDE-constrained optimization in inverse problems: Inverse Problems, 32, 1–26, doi: 10.1088/0266-5611/32/1/015007.INPEEY0266-5611
  • van Leeuwen, T., F. Herrmann, and B. Peters, 2014, A new take on FWI-wavefield reconstruction inversion: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20140703.
  • van Leeuwen, T., and F. J. Herrmann, 2013, Mitigating local minima in full-waveform inversion by expanding the search space: Geophysical Journal International, 195, 661–667, doi: 10.1093/gji/ggt258.GJINEA0956-540X
  • Virieux, J., and S. Operto, 2009, An overview of full waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033
  • Wang, C., D. Yingst, P. Farmer, I. Jones, G. Martin, and J. Leveille, 2017, Reconstructed full-waveform inversion with the extended source: 87th Annual International Meeting, SEG, Expanded Abstracts, 1449–1453, doi: 10.1190/segam2017-17736054.1.
  • Wang, C., D. Yingst, P. Farmer, and J. Leveille, 2016, Full-waveform inversion with the reconstructed wavefield method: 86th Annual International Meeting, SEG, Expanded Abstracts, 1237–1241, doi: 10.1190/segam2016-13870317.1.
  • Warner, M., and L. Guasch, 2016, Adaptive waveform inversion: Theory: Geophysics, 81, no. 6, R429–R445, doi: 10.1190/geo2015-0387.1.GPYSA70016-8033
  • Warner, M., T. Nangoo, A. Umpleby, N. Shah, C. Manuel, D. Bevc, M. Merino, M. Jakobsen, and R. S. Wu, 2023, Automated salt model building: From compaction trend to final velocity model using waveform inversion: The Leading Edge, 42, 196–206, doi: 10.1190/tle42030196.1.
  • Yang, Y., B. Engquist, J. Sun, and B. F. Hamfeldt, 2018, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion: Geophysics, 83, no. 1, R43–R62, doi: 10.1190/geo2016-0663.1.GPYSA70016-8033
  • Yao, G., N. V. da Silva, M. Warner, D. Wu, and C. Yang, 2019, Tackling cycle skipping in full-waveform inversion with intermediate data: Geophysics, 84, no. 3, R411–R427, doi: 10.1190/geo2018-0096.1.GPYSA70016-8033
  • Zelt, C. A., 1999, Modelling strategies and model assessment for wide-angle seismic traveltime data: Geophysical Journal International, 139, 183–204, doi: 10.1046/j.1365-246X.1999.00934.x.GJINEA0956-540X