This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Wave-equation traveltime inversion (WTI) is a promising tool for reconstructing the intrinsic anisotropy properties of the earth’s interior. However, conventional time-domain implementation of anisotropic WTI involves crosscorrelation between source- and receiver-side time-domain wavefields for gradient calculation, which requires heavy memory consumption and computational cost for storing/recomputing the source-side time-domain wavefields. To overcome this problem, we develop a novel frequency-domain anisotropic WTI method using only monochromatic wavefields during inversion. Thus, the memory requirement and computational cost are significantly reduced, which makes the monochromatic anisotropic WTI practical for real large-size applications. We focus on transversely isotropic media with a vertical symmetry axis (VTI) and aim to invert the P-wave vertical velocity v0 and anisotropic parameter ε. The subspace approach is adopted for calculating multiple step lengths to balance the updates of v0 and ε values in our VTI WTI method. Synthetic numerical examples based on an inclusion model and the BP 2007 model prove that the proposed monochromatic VTI WTI method can reconstruct background VTI models as accurately as VTI WTI with multiple frequencies. Then, we apply our method to an ocean-bottom seismic data set acquired at the Qiuyue field in the East China Sea. The inverted vertical velocity v0 matches well with the long-wavelength component of the sonic well-logging velocity. Compared with the inverted isotropic velocity model, the inverted VTI model produces more focused seismic imaging reflectors throughout the section and more accurately positions the reflector depths, which is confirmed by the sonic well logging.

REFERENCES

  • Alkhalifah, T., 1995, Gaussian beam depth migration for anisotropic media: Geophysics, 60, 1474–1484, doi: 10.1190/1.1443881.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., 2016, Research note: Insights into the data dependency on anisotropy: An inversion prospective: Geophysical Prospecting, 64, 505–513, doi: 10.1111/1365-2478.12345.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Alkhalifah, T., and R.-E. Plessix, 2014, A recipe for practical full-waveform inversion in anisotropic media: An analytical parameter resolution study: Geophysics, 79, no. 3, R91–R101, doi: 10.1190/geo2013-0366.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550–1566, doi: 10.1190/1.1443888.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., I. Tsvankin, K. Larner, and J. Toldi, 1996, Velocity analysis and imaging in transversely isotropic media: Methodology and a case study: The Leading Edge, 15, 371–378, doi: 10.1190/1.1437345.AbstractGoogle Scholar
  • Anderson, J. E., L. Tan, and D. Wang, 2012, Time-reversal checkpointing methods for RTM and FWI: Geophysics, 77, no. 4, S93–S103, doi: 10.1190/geo2011-0114.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal layering: Journal of Geophysical Research, 67, 4427–4440, doi: 10.1029/JZ067i011p04427.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Bakulin, A., M. Woodward, D. Nichols, K. Osypov, and O. Zdraveva, 2010, Localized anisotropic tomography with well information in VTI media: Geophysics, 75, no. 5, D37–D45, doi: 10.1190/1.3481702.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Banik, N. C., 1984, Velocity anisotropy of shales and depth estimation in the North Sea basin: Geophysics, 49, 1411–1419, doi: 10.1190/1.1441770.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Barnes, C., M. Charara, and T. Tsuchiya, 2008, Feasibility study for an anisotropic full waveform inversion of crosswell seismic data: Geophysical Prospecting, 56, 897–906, doi: 10.1111/j.1365-2478.2008.00702.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Burridge, R., M. V. de Hoop, D. Miller, and C. Spencer, 1998, Multiparameter inversion in anisotropic elastic media: Geophysical Journal International, 134, 757–777, doi: 10.1046/j.1365-246x.1998.00590.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Chi, B., L. Dong, and Y. Liu, 2015, Correlation-based reflection full-waveform inversion: Geophysics, 80, no. 4, R189–R202, doi: 10.1190/geo2014-0345.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Clapp, R. G., 2009, Reverse time migration with random boundaries: 79th Annual International Meeting, SEG, Expanded Abstracts, 2809–2813, doi: 10.1190/1.3255432.AbstractGoogle Scholar
  • Djebbi, R., and T. Alkhalifah, 2019, Frequency domain multiparameter acoustic inversion for transversely isotropic media with a vertical axis of symmetry: Geophysics, 84, no. 1, C1–C14, doi: 10.1190/geo2017-0564.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Duveneck, E., P. Milcik, P. M. Bakker, and C. Perkins, 2008, Acoustic VTI wave equations and their application for anisotropic reverse-time migration: 78th Annual International Meeting, SEG, Expanded Abstracts, 2186–2190, doi: 10.1190/1.3059320.AbstractGoogle Scholar
  • Feng, B., W. Xu, F. Luo, and H. Wang, 2020, Rytov-approximation-based wave-equation traveltime tomography: Geophysics, 85, no. 3, R289–R297, doi: 10.1190/geo2019-0210.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Feng, S., and G. T. Schuster, 2019, Transmission + reflection anisotropic wave-equation traveltime and waveform inversion: Geophysical Prospecting, 67, 423–442, doi: 10.1111/1365-2478.12733.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Gauthier, O., J. Virieux, and A. Tarantola, 1986, Two-dimensional nonlinear inversion of seismic waveforms: Numerical results: Geophysics, 51, 1387–1403, doi: 10.1190/1.1442188.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gholami, Y., R. Brossier, S. Operto, V. Prieux, A. Ribodetti, and J. Virieux, 2013b, Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 2: Synthetic and real data case studies from Valhall: Geophysics, 78, no. 2, R107–R124, doi: 10.1190/geo2012-0203.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gholami, Y., R. Brossier, S. Operto, A. Ribodetti, and J. Virieux, 2013a, Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade-off analysis: Geophysics, 78, no. 2, R81–R105, doi: 10.1190/geo2012-0204.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grechka, V., I. Tsvankin, A. Bakulin, J. O. Hansen, and C. Signer, 2002, Joint inversion of PP and PS reflection data for VTI media: A North Sea case study: Geophysics, 67, 1382–1395, doi: 10.1190/1.1512784.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Griewank, A., 1992, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation: Optimization Methods and Software, 1, 35–54, doi: 10.1080/10556789208805505.OMSOE21055-6788CrossrefGoogle Scholar
  • Griewank, A., and A. Walther, 2000, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation: ACM Transactions on Mathematical Software, 26, 19–45, doi: 10.1145/347837.347846.ACMSCU0098-3500CrossrefWeb of ScienceGoogle Scholar
  • Guitton, A., and T. Alkhalifah, 2017, A parameterization study for elastic VTI full-waveform inversion of hydrophone components: Synthetic and North Sea field data examples: Geophysics, 82, no. 6, R299–R308, doi: 10.1190/geo2017-0073.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Jiang, F., and H. W. Zhou, 2017, Traveltime inversion and error analysis for layered anisotropy: Journal of Applied Geophysics, 73, 101–110, doi: 10.1016/j.jappgeo.2010.12.001.JAGPEA0926-9851CrossrefGoogle Scholar
  • Kennett, B. L. N., M. S. Sambridge, and P. R. Williamson, 1988, Subspace methods for large inverse problems with multiple parameter classes: Geophysical Journal International, 94, 237–247, doi: 10.1111/j.1365-246X.1988.tb05898.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Lee, H. Y., J. M. Koo, D. J. Min, B. D. Kwon, and H. S. Yoo, 2010, Frequency-domain elastic full waveform inversion for VTI media: Geophysical Journal International, 183, 884–904, doi: 10.1111/j.1365-246X.2010.04767.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Levin, F., 1979, Seismic velocities in transversely isotropic media: Geophysics, 44, 918–936, doi: 10.1190/1.1440985.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, V., I. Tsvankin, and T. Alkhalifah, 2016a, Analysis of RTM extended images for VTI media: Geophysics, 81, no. 3, S139–S150, doi: 10.1190/geo2015-0384.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, Y., and B. Biondi, 2011, Migration velocity analysis for anisotropic models: 81st Annual International Meeting, SEG, Expanded Abstracts, 201–206, doi: 10.1190/1.3627605.AbstractGoogle Scholar
  • Li, Y., B. Biondi, R. Clapp, and D. Nichols, 2016b, Integrated VTI model building with seismic data, geologic information, and rock-physics modeling — Part 1: Theory and synthetic test: Geophysics, 81, no. 5, C177–C191, doi: 10.1190/geo2015-0592.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Liu, Y., X. Huang, J. Yang, X. Liu, B. Li, L. Dong, J. Geng, and J. Cheng, 2021, Multiparameter model building for the Qiuyue structure using 4C ocean-bottom seismometer data: Geophysics, 86, no. 5, B291–B301, doi: 10.1190/geo2020-0537.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Liu, Y., J. Yang, B. Chi, and L. Dong, 2015, An improved scattering-integral approach for frequency-domain full waveform inversion: Geophysical Journal International, 202, 1827–1842, doi: 10.1093/gji/ggv254.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Luo, Y., Y. Ma, Y. Wu, H. Liu, and L. Cao, 2016, Full-traveltime inversion: Geophysics, 81, no. 5, R261–R274, doi: 10.1190/geo2015-0353.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Luo, Y., and G. T. Schuster, 1991, Wave-equation traveltime inversion: Geophysics, 56, 645–653, doi: 10.1190/1.1443081.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ma, Y., and D. Hale, 2013, Wave-equation reflection traveltime inversion with dynamic warping and full-waveform inversion: Geophysics, 78, no. 6, R223–R233, doi: 10.1190/geo2013-0004.1.AbstractWeb of ScienceGoogle Scholar
  • Mulder, W. A., and R.-E. Plessix, 2004, How to choose a subset of frequencies in frequency-domain finite-difference migration: Geophysical Journal International, 158, 801–812, doi: 10.1111/j.1365-246X.2004.02336.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Nihei, K. T., and X. Li, 2007, Frequency response modeling of seismic waves using finite difference time domain with phase sensitive detection (TDPSD): Geophysical Journal International, 169, 1069–1078, doi: 10.1111/j.1365-246X.2006.03262.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Nocedal, J., and S. Wright, 2006, Numerical optimization: Springer Science & Business Media.CrossrefGoogle Scholar
  • Pan, W., K. A. Innanen, G. F. Margrave, M. C. Fehler, X. Fang, and J. Li, 2016, Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion: Geophysics, 81, no. 5, R275–R291, doi: 10.1190/geo2015-0594.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246X.2006.02978.x.CrossrefWeb of ScienceGoogle Scholar
  • Plessix, R.-E., and Q. Cao, 2011, A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium: Geophysical Journal International, 185, 539–556, doi: 10.1111/j.1365-246X.2011.04957.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Sambridge, M. S., A. Tarantola, and B. L. N. Kennett, 1991, An alternative strategy for non-linear inversion of seismic waveforms: Geophysical Prospecting, 39, 723–736, doi: 10.1111/j.1365-2478.1991.tb00341.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sarkar, D., A. Bakulin, and R. L. Kranz, 2003, Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone: Geophysics, 68, 690–704, doi: 10.1190/1.1567240.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sarkar, D., and I. Tsvankin, 2006, Anisotropic migration velocity analysis: Application to a data set from West Africa: Geophysical Prospecting, 54, 575–587, doi: 10.1111/j.1365-2478.2006.00556.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sava, P., and B. Biondi, 2004, Wave-equation migration velocity analysis. I. Theory: Geophysical Prospecting, 52, 593–606, doi: 10.1111/j.1365-2478.2004.00447.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Schuster, G. T., 1993, Least-squares cross-well migration: 63rd Annual International Meeting, SEG, Expanded Abstracts, 110–113, doi: 10.1190/1.1822308.AbstractGoogle Scholar
  • Sei, A., and W. W. Symes, 1994, Gradient calculation of the traveltime cost function without ray tracing: 64th Annual International Meeting, SEG, Expanded Abstracts, 1351–1354, doi: 10.1190/1.1822780.AbstractGoogle Scholar
  • Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, no. 5, VE49–VE59, doi: 10.1190/1.2972021.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sirgue, L., J. T. Etgen, and U. Albertin, 2008, 3D frequency domain waveform inversion using time domain finite difference methods: 70th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20147683.CrossrefGoogle Scholar
  • Sirgue, L., and R. G. Pratt, 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69, 231–248, doi: 10.1190/1.1649391.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Symes, W. W., 2007, Reverse time migration with optimal checkpointing: Geophysics, 72, no. 5, SM213–SM221, doi: 10.1190/1.2742686.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Taillandier, C., M. Noble, H. Chauris, and H. Calandra, 2009, First-arrival traveltime tomography based on the adjoint-state method: Geophysics, 74, no. 6, WCB1–WCB10, doi: 10.1190/1.3250266.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966, doi: 10.1190/1.1442051.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tsvankin, I., J. Gaiser, V. Grechka, M. van Der Baan, and K. Thomsen, 2010, Seismic anisotropy in exploration and reservoir characterization: An overview: Geophysics, 75, no. 5, 75A15–75A29, doi: 10.1190/1.3481775.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • van Leeuwen, T., and W. A. Mulder, 2010, A correlation-based misfit criterion for wave-equation traveltime tomography: Geophysical Journal International, 182, 1383–1394, doi: 10.1111/j.1365-246X.2010.04681.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Waheed, U. B., G. Flagg, and C. E. Yarman, 2016, First-arrival traveltime tomography for anisotropic media using the adjoint-state method: Geophysics, 81, no. 4, R147–R155, doi: 10.1190/geo2015-0463.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wang, C., D. Yingst, R. Bloor, and J. Leveille, 2012, VTI waveform inversion with practical strategies: Application to 3D real data: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-0736.1.AbstractGoogle Scholar
  • Wang, J., J. Yang, L. Dong, and Y. Liu, 2021, Frequency-domain wave-equation traveltime inversion with a monofrequency component: Geophysics, 86, no. 6, R913–R926, doi: 10.1190/geo2020-0708.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, 15–26, doi: 10.1190/1.1443179.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhu, X., D. P. Sixta, and B. G. Angstman, 1992, Tomostatics: Turning-ray tomography + static corrections: The Leading Edge, 11, 15–23, doi: 10.1190/1.1436864.AbstractGoogle Scholar