This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Mask filtering to the Wigner-Ville distribution

Authors:

The Wigner-Ville distribution (WVD) is a high-resolution time-frequency spectral analysis method for nonstationary signals; yet, it suffers from cross-term interference among signal components. We proposed applying a masking filter directly to the WVD time-frequency spectrum to suppress the cross-term interference. Conventional methods for suppressing interference include the smoothed pseudo-WVD (SP-WVD) method, which incorporates smooth filtering in the time and frequency directions. We exploited the SP-WVD spectrum as a reference to design the masking filter; thus, the mask-filtered WVD (MF-WVD) procedure is data-adaptive. The MF-WVD method preserves the high-resolution energy concentration in the spectrum portrayed by the standard WVD, while suppressing the cross-term interference cleanly as in the SP-WVD method. Applying the MF-WVD method to field 3D seismic data generates high-resolution spectral cubes for various frequencies, and these spectral cubes may be used intuitively for detecting reservoir-related characteristics.

REFERENCES

  • Auger, F., and P. Flandrin, 1995, Improving the readability of time-frequency and time-scale representations by the reassignment method: IEEE Transactions on Signal Processing, 43, 1068–1089, doi: 10.1109/78.382394.ITPRED1053-587X
  • Boashash, B., 1988, Note on the use of the Wigner distribution for time–frequency signal analysis: IEEE Transactions on Acoustics, Speech, and Signal Processing, 36, 1518–1521, doi: 10.1109/29.90380.IETABA0096-3518
  • Choi, H. I., and W. J. Williams, 1989, Improved time-frequency representations of multicomponent signals using exponential distribution: IEEE Transactions on Acoustic Speech and Signal Processing, 37, 862–871, doi: 10.1109/ASSP.1989.28057.
  • Claasen, T. A. C. M., and W. F. G. Mecklenbräuker, 1980a, The Wigner distribution — A tool for time-frequency signal analysis — Part 1: Continuous time signals: Philips Journal of Research, 35, 217–250.PHJRD90165-5817
  • Claasen, T. A. C. M., and W. F. G. Mecklenbräuker, 1980b, The Wigner distribution — A tool for time-frequency signal analysis — Part 2: Discrete time signals: Philips Journal of Research, 35, 276–300.PHJRD90165-5817
  • Claasen, T. A. C. M., and W. F. G. Mecklenbräuker, 1980c, The Wigner distribution — A tool for time-frequency signal analysis — Part 3: Relations with other time-frequency signal transformations: Philips Journal of Research, 35, 372–389.PHJRD90165-5817
  • Cohen, L., 1989, Time-frequency distributions — A review: Proceedings of the IEEE, 77, 941–981, doi: 10.1109/5.30749.
  • Cohen, L., 1995, Time-frequency analysis, theory and applications: Prentice Hall.
  • Du, W., Z. X. Jiang, and Q. Li, 2016, Sedimentary characterization of the Upper Paleozoic coal-bearing tight sand strata, Daniudi Gas Field, Ordos Basin, China: Journal of Earth Science, 27, 823–834, doi: 10.1007/s12583-016-0705-5.
  • Flandrin, P., and P. Borgnat, 2010, Time-frequency energy distributions meet compressed sensing: IEEE Transactions on Signal Processing, 58, 2974–2982, doi: 10.1109/TSP.2010.2044839.
  • Flandrin, P., and W. Martin, 1984, A general class of estimators for the Wigner-Ville spectrum of non-stationary processes, in A. BensoussanJ. L. Lions, eds., Analysis and optimization of systems: Lecture Notes in Control and Information Sciences 62, Springer, 15–31, doi: 10.1007/BFb0004941.
  • Gabor, D., 1946, Theory of communication — Part 1: The analysis of information: Journal of the Institution of Electrical Engineers, 93, 429–441, doi: 10.1049/ji-1.1947.0015.
  • Haddad, R. A., and A. N. Akansu, 1991, A class of fast Gaussian binomial filters for speech and image processing: IEEE Transactions on Signal Processing, 39, 723–727, doi: 10.1109/78.80892.ITPRED1053-587X
  • He, F., Y. Rao, W. Wang, and Y. Wang, 2020, Prediction of hydrocarbon reservoirs within coal-bearing formations: Journal of Geophysics and Engineering, 17, 484–492, doi: 10.1093/jge/gxaa007.
  • Jeong, J., and W. Williams, 1992, Alias-free generalized discrete-time time-frequency distributions: IEEE Transactions on Signal Processing, 40, 2757–2765, doi: 10.1109/78.165662.
  • Jones, D. L., and R. G. Baraniuk, 1995, An adaptive optimal-kernel time-frequency representation: IEEE Transactions on Signal Processing, 43, 2361–2371, doi: 10.1109/78.469854.ITPRED1053-587X
  • Li, Y., and X. Zheng, 2008, Spectral decomposition using Wigner-Ville distribution with applications to carbonate reservoir characterization: The Leading Edge, 27, 1050–1057, doi: 10.1190/1.2967559.
  • Liu, N., J. Gao, Z. Zhang, X. Jiang, and Q. Lv, 2017, High-resolution characterization of geologic structures using the synchrosqueezing transform: Interpretation, 5, no. 1, T75–T85, doi: 10.1190/INT-2016-0006.1.
  • Nixon, M., and A. Aguado, 2008, Feature extraction and image processing for computer vision: Academic Press.
  • Rao, Y., and Y. Wang, 2016, VSP wave separation by adaptive masking filters: Journal of Geophysics and Engineering, 13, 412–421, doi: 10.1088/1742-2132/13/3/412.
  • Rioul, O., and M. Vetterli, 1991, Wavelets and signal processing: IEEE Signal Processing Magazine, 8, 14–38, doi: 10.1109/79.91217.ISPRE61053-5888
  • Shapiro, L., and G. Stockman, 2001, Computer vision, theory and applications: Prentice Hall.
  • Sinha, S., P. S. Routh, P. D. Anno, and J. P. Castagna, 2005, Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics, 70, no. 6, P19–P25, doi: 10.1190/1.2127113.GPYSA70016-8033
  • Stanković, L., 1998, On the realization of the polynomial Wigner-Ville distribution for multicomponent signals: IEEE Signal Processing Letters, 5, 157–159, doi: 10.1109/97.700915.
  • Steeghs, P., and G. Drijkoningen, 2001, Seismic sequence analysis and attribute extraction using quadratic time-frequency representations: Geophysics, 66, 1947–1959, doi: 10.1190/1.1487136.GPYSA70016-8033
  • Ville, J., 1948, Théorie et application de la notion de signal analytique: Câbles et transmissions, 2A, 61–74.
  • Wang, Y., 2003, Multiple attenuation: Coping with the spatial truncation effect in the Radon transform domain: Geophysical Prospecting, 51, 75–87, doi: 10.1046/j.1365-2478.2003.00355.x.GPPRAR0016-8025
  • Wang, Y., 2007, Seismic time-frequency spectral decomposition by matching pursuit: Geophysics, 72, no. 1, V13–V20, doi: 10.1190/1.2387109.GPYSA70016-8033
  • Wang, Y., 2010, Multichannel matching pursuit for seismic trace decomposition: Geophysics, 75, no. 4, V61–V66, doi: 10.1190/1.3462015.GPYSA70016-8033
  • Wang, Y., 2012, Reservoir characterization based on seismic spectral variations: Geophysics, 77, no. 6, M89–M95, doi: 10.1190/geo2011-0323.1.GPYSA70016-8033
  • Wang, Y., 2021, The W transform: Geophysics, 86, no. 1, V31–V39, doi: 10.1190/geo2020-0316.1.GPYSA70016-8033
  • Wang, Y., G. A. Houseman, G. Lin, F. Guo, Y. J. Wang, W. M. Fan, and X. Chang, 2005, Mesozoic lithospheric deformation in the North China block: Numerical simulation of evolution from orogenic belt to extensional basin system: Tectonophysics, 405, 47–63, doi: 10.1016/j.tecto.2005.05.012.TCTOAM0040-1951
  • Wang, Y., Y. Rao, and D. Xu, 2020, Multichannel maximum-entropy method for the Wigner-Ville distribution: Geophysics, 85, no. 1, V25–V31, doi: 10.1190/geo2019-0347.1.GPYSA70016-8033
  • Wigner, E. P., 1932, On the quantum correction for thermodynamic equilibrium: Physical Review, 40, 749–759, doi: 10.1103/PhysRev.40.749.PHRVAO0031-899X
  • Williams, W. J., and J. C. Jeong, 1992, Reduced interference time-frequency distributions, in B. Boashash, ed., Time-frequency signal analysis: Methods and applications: Longman Cheshire, 74–98, doi: 10.2307/2532288.
  • Zhou, B., and S. Greenhalgh, 1996, Multiple suppression by 2D filtering in the parabolic τ-p domain: A wave-equation-based method: Geophysical Prospecting, 44, 375–401, doi: 10.1111/j.1365-2478.1996.tb00154.x.GPPRAR0016-8025