This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Full-waveform inversion with source and receiver coupling effects correction

Authors:

Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of the near surface, and they are as important as the model parameters for the inversion success. We have adopted a full-waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameters. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problems to invert the model parameter without knowledge of the source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.

REFERENCES

  • AL-Marzooq, M., M. S. Diallo, V. Etienne, T. Tonellot, and S. I. Kaka, 2019, Mitigating the effects of sand dunes on seismic data from the Rub al Khali basin, Saudi Arabia: Geophysical Prospecting, 67, 1825–1837, doi: 10.1111/1365-2478.12751.GPPRAR0016-8025
  • Aravkin, A. Y., and T. van Leeuwen, 2012, Estimating nuisance parameters in inverse problems: Inverse Problems, 28, 115016, doi: 10.1088/0266-5611/28/11/115016.INPEEY0266-5611
  • Claerbout, J., and S. Fomel, 2012, Image estimation by example: Geophysical Soundings Image Construction Multidimensional autoregression, http://sepwww.stanford.edu/sep/prof/gee1-2012.pdf, accessed 8 May 2019
  • Fang, Z., R. Wang, and F. J. Herrmann, 2018, Source estimation for wavefield-reconstruction inversion: Geophysics, 83, no. 4, R345–R359, doi: 10.1190/geo2017-0700.1.GPYSA70016-8033
  • Golub, G., and V. Pereyra, 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19, R1–R26, doi: 10.1088/0266-5611/19/2/201.INPEEY0266-5611
  • Hestenes, M. R., and E. Stiefel, 1952, Methods of conjugate gradients for solving linear systems: Journal of Research of the National Bureau of Standards, 49, 409–436, doi: 10.6028/jres.049.044.
  • Kamei, R., T. Miyoshi, R. G. Pratt, M. Takanashi, and S. Masaya, 2015, Application of waveform tomography to a crooked-line 2D land seismic data set: Geophysics, 80, no. 5, B115–B129, doi: 10.1190/geo2014-0537.1.GPYSA70016-8033
  • Li, M., J. Rickett, and A. Abubakar, 2013, Application of the variable projection scheme for frequency-domain full-waveform inversion: Geophysics, 78, no. 6, R249–R257, doi: 10.1190/geo2012-0351.1.GPYSA70016-8033
  • Liu, J., A. Abubakar, T. Habashy, D. Alumbaugh, E. Nichols, and G. Gao, 2008, Nonlinear inversion approaches for cross-well electromagnetic data collected in cased-wells: 78th Annual International Meeting, SEG, Expanded Abstracts, 304–308, doi: 10.1190/1.3054810.
  • Maurer, H., S. A. Greenhalgh, E. Manukyan, S. Marelli, and A. G. Green, 2012, Receiver-coupling effects in seismic waveform inversions: Geophysics, 77, no. 1, R57–R63, doi: 10.1190/geo2010-0402.1.GPYSA70016-8033
  • Nocedal, J., 1980, Updating quasi-Newton matrices with limited storage: Mathematics of Computation, 35, 773–773, doi: 10.1090/S0025-5718-1980-0572855-7.MCMPAF0025-5718
  • Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain — Part 1: Theory and verification in a physical scale model: Geophysics, 64, 888–901, doi: 10.1190/1.1444597.GPYSA70016-8033
  • Pratt, R. G., C. S. Shin, and G. J. Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998 .00498.x.
  • Schleicher, K., 2018, The conjugate gradient method: The Leading Edge, 37, 296–298, doi: 10.1190/tle37040296.1.
  • van Leeuwen, T., A. Y. Aravkin, and F. J. Herrmann, 2014, Comment on: “Application of the variable projection scheme for frequency-domain full-waveform inversion” (M. Li, J. Rickett, and A. Abubakar, Geophysics, 78, no. 6, R249–R257): Geophysics, 79, no. 3, X11–X15, doi: 10.1190/geo2013-0466.1.GPYSA70016-8033
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033
  • Vossen, R. V., A. Curtis, A. Laake, and J. Trampert, 2006, Surface-consistent deconvolution using reciprocity and waveform inversion: Geophysics, 71, no. 2, V19–V30, doi: 10.1190/1.2187799.GPYSA70016-8033
  • Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data 2nd Edition: SEG.