ABSTRACT
Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of the near surface, and they are as important as the model parameters for the inversion success. We have adopted a full-waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameters. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problems to invert the model parameter without knowledge of the source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.
REFERENCES
- 2019, Mitigating the effects of sand dunes on seismic data from the Rub al Khali basin, Saudi Arabia: Geophysical Prospecting, 67,
1825–1837 , doi:10.1111/1365-2478.12751 .GPPRAR 0016-8025 , - 2012, Estimating nuisance parameters in inverse problems: Inverse Problems, 28,
115016 , doi:10.1088/0266-5611/28/11/115016 .INPEEY 0266-5611 , - 2012, Image estimation by example: Geophysical Soundings Image Construction Multidimensional autoregression, http://sepwww.stanford.edu/sep/prof/gee1-2012.pdf, accessed 8 May 2019 ,
- 2018, Source estimation for wavefield-reconstruction inversion: Geophysics, 83, no. 4,
R345–R359 , doi:10.1190/geo2017-0700.1 .GPYSA7 0016-8033 , - 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19,
R1–R26 , doi:10.1088/0266-5611/19/2/201 .INPEEY 0266-5611 , - 1952, Methods of conjugate gradients for solving linear systems: Journal of Research of the National Bureau of Standards, 49,
409–436 , doi:10.6028/jres.049.044 . , - 2015, Application of waveform tomography to a crooked-line 2D land seismic data set: Geophysics, 80, no. 5,
B115–B129 , doi:10.1190/geo2014-0537.1 .GPYSA7 0016-8033 , - 2013, Application of the variable projection scheme for frequency-domain full-waveform inversion: Geophysics, 78, no. 6,
R249–R257 , doi:10.1190/geo2012-0351.1 .GPYSA7 0016-8033 , - 2008, Nonlinear inversion approaches for cross-well electromagnetic data collected in cased-wells:
78th Annual International Meeting, SEG , Expanded Abstracts,304–308 , doi:10.1190/1.3054810 . , - 2012, Receiver-coupling effects in seismic waveform inversions: Geophysics, 77, no. 1,
R57–R63 , doi:10.1190/geo2010-0402.1 .GPYSA7 0016-8033 , - 1980, Updating quasi-Newton matrices with limited storage: Mathematics of Computation, 35,
773–773 , doi:10.1090/S0025-5718-1980-0572855-7 .MCMPAF 0025-5718 , - 1999, Seismic waveform inversion in the frequency domain — Part 1: Theory and verification in a physical scale model: Geophysics, 64,
888–901 , doi:10.1190/1.1444597 .GPYSA7 0016-8033 , - 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133,
341–362 , doi:10.1046/j.1365-246X.1998 .00498.x . , - 2018, The conjugate gradient method: The Leading Edge, 37,
296–298 , doi:10.1190/tle37040296.1 . , - 2014, Comment on: “Application of the variable projection scheme for frequency-domain full-waveform inversion” (M. Li, J. Rickett, and A. Abubakar, Geophysics, 78, no. 6, R249–R257): Geophysics, 79, no. 3,
X11–X15 , doi:10.1190/geo2013-0466.1 .GPYSA7 0016-8033 , - 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6,
WCC1–WCC26 , doi:10.1190/1.3238367 .GPYSA7 0016-8033 , - 2006, Surface-consistent deconvolution using reciprocity and waveform inversion: Geophysics, 71, no. 2,
V19–V30 , doi:10.1190/1.2187799 .GPYSA7 0016-8033 , - 2001,
Seismic data analysis: Processing, inversion, and interpretation of seismic data 2nd Edition : SEG. ,