This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

3D wave-equation dispersion inversion of Rayleigh waves

Authors:

The 2D wave-equation dispersion (WD) inversion method is extended to 3D wave-equation dispersion inversion of surface waves for the shear-velocity distribution. The objective function of 3D WD is the frequency summation of the squared wavenumber κ(ω) differences along each azimuth angle of the fundamental or higher modes of Rayleigh waves in each shot gather. The S-wave velocity model is updated by the weighted zero-lag crosscorrelation between the weighted source-side wavefield and the back-projected receiver-side wavefield for each azimuth angle. A multiscale 3D WD strategy is provided, which starts from the pseudo-1D S-velocity model, which is then used to get the 2D WD tomogram, which in turn is used as the starting model for 3D WD. The synthetic and field data examples demonstrate that 3D WD can accurately reconstruct the 3D S-wave velocity model of a laterally heterogeneous medium and has much less of a tendency to getting stuck in a local minimum compared with full-waveform inversion.

REFERENCES

  • Aki, K., and P. G. Richards, 2002, Quantitative seismology: University Science Books.Google Scholar
  • Bergamo, P., D. Boiero, and L. V. Socco, 2012, Retrieving 2D structures from surface-wave data by means of space-varying spatial windowing: Geophysics, 77, no. 4, EN39–EN51, doi: 10.1190/geo2012-0031.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Boiero, D., P. Bergamo, R. B. Rege, and L. V. Socco, 2011, Estimating surface-wave dispersion curves from 3D seismic acquisition schemes — Part 1: 1D models: Geophysics, 76, no. 6, G85–G93, doi: 10.1190/geo2011-0124.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Brenders, A., S. Charles, and R. Pratt, 2008, Velocity estimation by waveform tomography in the Canadian foothill — A synthetic benchmark study: 70th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20147678.CrossrefGoogle Scholar
  • Dou, S., and J. B. Ajo-Franklin, 2014, Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost: Geophysics, 79, no. 6, EN107–EN124, doi: 10.1190/geo2013-0427.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Feng, Z., and G. T. Schuster, 2017, Elastic least-squares reverse time migration: Geophysics, 82, no. 2, S143–S157, doi: 10.1190/geo2016-0254.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Foti, S., C. G. Lai, G. J. Rix, and C. Strobbia, 2014, Surface wave methods for near-surface site characterization: CRC Press.CrossrefGoogle Scholar
  • Fu, L., B. Guo, and G. T. Schuster, 2018a, Multiscale phase inversion of seismic data: Geophysics, 83, no. 2, R159–R171, doi: 10.1190/geo2017-0353.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fu, L., Z. Liu, and G. Schuster, 2018b, Superresolution near-field imaging with surface waves: Geophysical Journal International, 212, 1111–1122, doi: 10.1093/gji/ggx466.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences: Bulletin of the Seismological Society of America, 86, 1091–1106.CrossrefWeb of ScienceGoogle Scholar
  • Groos, L., M. Schäfer, T. Forbriger, and T. Bohlen, 2014, The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves: Geophysics, 79, no. 6, R247–R261, doi: 10.1190/geo2013-0462.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Groos, L., M. Schäfer, T. Forbriger, and T. Bohlen, 2017, Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves: Geophysics, 82, no. 2, R109–R117, doi: 10.1190/geo2016-0284.1.AbstractWeb of ScienceGoogle Scholar
  • Hanafy, S. M., 2015, Mapping the Qademah fault with traveltime, surface-wave, and resistivity tomograms: 85th Annual International Meeting, SEG, Expanded Abstracts, 3347–3351, doi: 10.1190/segam2015-5886064.1.AbstractGoogle Scholar
  • Haskell, N. A., 1953, The dispersion of surface waves on multilayered media: Bulletin of the Seismological Society of America, 43, 17–34.CrossrefGoogle Scholar
  • Herrmann, R. B., 2013, Computer programs in seismology: An evolving tool for instruction and research: Seismological Research Letters, 84, 1081–1088, doi: 10.1785/0220110096.CrossrefWeb of ScienceGoogle Scholar
  • Ivanov, J., B. Leitner, W. Shefchik, J. T. Shwenk, and S. L. Peterie, 2013, Evaluating hazards at salt cavern sites using multichannel analysis of surface waves: The Leading Edge, 32, 298–305, doi: 10.1190/tle32030298.1.AbstractGoogle Scholar
  • Krohn, C. E., and P. S. Routh, 2016, Exploiting surface consistency for surface-wave characterization and mitigation — Part 2: Application to 3D data: Geophysics, 82, no. 1, V39–V50, doi: 10.1190/geo2016-0020.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Krohn, C. E., and P. S. Routh, 2017, Exploiting surface consistency for surface-wave characterization and mitigation — Part 1: Theory and 2D examples: Geophysics, 82, no. 1, V21–V37, doi: 10.1190/geo2016-0019.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, J., Y. Chen, and G. Schuster, 2018a, Separation of multi-mode surface waves by supervised machine learning methods: Presented at the 2018 SEG/SPE Beijing Workshop: Maximizing asset Value through Artificial Intelligence and Machine Learning.Google Scholar
  • Li, J., G. Dutta, and G. Schuster, 2017a, Wave-equation Qs inversion of skeletonized surface waves: Geophysical Journal International, 209, 979–991, doi: 10.1093/gji/ggx051.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Li, J., G. Dutta, and G. T. Schuster, 2017b, Skeletonized wave-equation Qs tomography using surface waves: 87th Annual International Meeting, SEG, Expanded Abstracts, 2726–2731, doi: 10.1190/segam2017-17784736.1.AbstractGoogle Scholar
  • Li, J., Z. Feng, and G. Schuster, 2017c, Wave-equation dispersion inversion: Geophysical Journal International, 208, 1567–1578, doi: 10.1093/gji/ggw465.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Li, J., S. Hanafy, and G. Schuster, 2018b, Wave-equation dispersion inversion of guided p waves in a waveguide of arbitrary geometry: Journal of Geophysical Research: Solid Earth, 123, 7760–7774.CrossrefWeb of ScienceGoogle Scholar
  • Li, J., F.-C. Lin, A. Allam, Y. Ben-Zion, Z. Liu, and G. Schuster, 2019, Wave equation dispersion inversion of surface waves recorded on irregular topography: Geophysical Journal International, 217, 346–360, doi: 10.1093/gji/ggz005.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Li, J., K. Lu, and G. Schuster, 2017d, Two robust imaging methodologies for challenging environments: Wave equation dispersion inversion of surface waves and supervirtual interferometry + tomography for far-offset refractions: SEG/SINOPEC Foothill Technical Forum, 17–21.AbstractGoogle Scholar
  • Li, J., and G. Schuster, 2016, Skeletonized wave equation of surface wave dispersion inversion: 86th Annual International Meeting, SEG, Expanded Abstracts, 3630–3635, doi: 10.1190/segam2016-13770057.1.AbstractGoogle Scholar
  • Li, J., G. T. Schuster, F.-C. Lin, and A. Alam, 2017e, Wave-equation dispersion inversion of surface waves recorded on irregular topography: 87th Annual International Meeting, SEG, Expanded Abstracts, 2621–2626, doi: 10.1190/segam2017-17663038.1.AbstractGoogle Scholar
  • Liu, Z., A. Altheyab, S. Hanafy, and G. Schuster, 2016, Imaging near-surface heterogeneities by natural migration of surface waves: 86th Annual International Meeting, SEG, Expanded Abstracts, 4946–4950, doi: 10.1190/segam2016-13845123.1.AbstractGoogle Scholar
  • Liu, Z., A. AlTheyab, S. M. Hanafy, and G. Schuster, 2017, Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test: Geophysics, 82, no. 3, S197–S205, doi: 10.1190/geo2016-0253.1.GJINEA0956-540XAbstractWeb of ScienceGoogle Scholar
  • Liu, Z., and L. Huang, 2018, Multiscale and layer-stripping wave-equation dispersion inversion of Rayleigh waves: 88th Annual International Meeting, SEG, Expanded Abstracts, 2536–2540, doi: 10.1190/segam2018-2997500.1.AbstractGoogle Scholar
  • Lu, K., J. Li, B. Guo, L. Fu, and G. Schuster, 2017, Tutorial for wave-equation inversion of skeletonized data: Interpretation, 5, no. 3, SO1–SO10, doi: 10.1190/INT-2016-0241.1.AbstractGoogle Scholar
  • Luo, Y., and G. T. Schuster, 1991a, Wave equation inversion of skeletalized geophysical data: Geophysical Journal International, 105, 289–294, doi: 10.1111/j.1365-246x.1991.tb06713.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Luo, Y., and G. T. Schuster, 1991b, Wave-equation traveltime inversion: Geophysics, 56, 645–653, doi: 10.1190/1.1443081.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Masoni, I., J.-L. Boelle, R. Brossier, and J. Virieux, 2016, Layer stripping FWI for surface waves: 86th Annual International Meeting, SEG, Expanded Abstracts, 1369–1373, doi: 10.1190/segam2016-13859781.1.AbstractGoogle Scholar
  • Mi, B., J. Xia, C. Shen, L. Wang, Y. Hu, and F. Cheng, 2017, Horizontal resolution of multichannel analysis of surface waves: Geophysics, 82, no. 3, EN51–EN66, doi: 10.1190/geo2016-0202.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nocedal, J., and S. Wright, 2006, Numerical optimization: Springer Science and Business Media.CrossrefGoogle Scholar
  • O’Neill, A., and T. Matsuoka, 2005, Dominant higher surface-wave modes and possible inversion pitfalls: Journal of Environmental and Engineering Geophysics, 10, 185–201.AbstractWeb of ScienceGoogle Scholar
  • Pan, Y., J. Xia, Y. Xu, Z. Xu, F. Cheng, H. Xu, and L. Gao, 2016, Delineating shallow S-wave velocity structure using multiple ambient-noise surface-wave methods: An example from western Junggar, China: Bulletin of the Seismological Society of America, 106, 327–336, doi: 10.1785/0120150014.CrossrefWeb of ScienceGoogle Scholar
  • Park, C. B., R. D. Miller, and J. Xia, 1998, Imaging dispersion curves of surface waves on multichannel record: 68th Annual International Meeting, SEG, Expanded Abstracts, 1377–1380, doi: 10.1190/1.1820161.AbstractGoogle Scholar
  • Park, C. B., R. D. Miller, and J. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808, doi: 10.1190/1.1444590.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pérez Solano, C. A., D. Donno, and H. Chauris, 2014, Alternative waveform inversion for surface wave analysis in 2-D media: Geophysical Journal International, 198, 1359–1372, doi: 10.1093/gji/ggu211.CrossrefWeb of ScienceGoogle Scholar
  • Plessix, R.-E., and W. Mulder, 2004, Frequency-domain finite-difference amplitude preserving migration: Geophysical Journal International, 157, 975–987, doi: 10.1111/j.1365-246x.1991.tb06713.x.CrossrefWeb of ScienceGoogle Scholar
  • Rawlinson, N., A. Fichtner, M. Sambridge, and M. K. Young, 2014, Seismic tomography and the assessment of uncertainty, in R. Dmowska, ed., Advances in geophysics: Elsevier 55, 1–76.Google Scholar
  • Schuster, G. T., 2017, Seismic inversion: SEG.AbstractGoogle Scholar
  • Snieder, R., 2002a, General theory of elastic wave scattering: Chapter 1.7.1, in R. PikeP. Sabatier, eds., Scattering and inverse scattering in pure and applied science: Academic Press, 528–542.Google Scholar
  • Snieder, R., 2002b, Scattering of surface waves: Chapter 1.7.3, Scattering and inverse scattering in pure and applied science: Academic Press, 562–577.Google Scholar
  • Socco, L. V., D. Boiero, S. Foti, and R. Wisén, 2009, Laterally constrained inversion of ground roll from seismic reflection records: Geophysics, 74, no. 6, G35–G45, doi: 10.1190/1.3223636.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Woodhouse, J. H., and A. M. Dziewonski, 1984, Mapping the upper mantle: Three dimensional modeling of earth structure by inversion of seismic waveforms: Journal of Geophysical Research: Solid Earth, 89, 5953–5986, doi: 10.1029/JB089iB07p05953.CrossrefWeb of ScienceGoogle Scholar
  • Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Xia, J., R. Miller, C. Park, and G. Tian, 2002, Determining Q of near-surface materials from Rayleigh waves: Journal of Applied Geophysics, 51, 121–129, doi: 10.1016/S0926-9851(02)00228-8.CrossrefWeb of ScienceGoogle Scholar
  • Yilmaz, O., 2015, Engineering seismology with applications to geotechnical engineering: SEG.AbstractGoogle Scholar
  • Yuan, Y. O., F. J. Simons, and E. Bozdağ, 2015, Multiscale adjoint waveform tomography for surface and body waves: Geophysics, 80, no. 5, R281–R302, doi: 10.1190/geo2014-0461.1.AbstractWeb of ScienceGoogle Scholar
  • Zelt, C. A., and P. J. Barton, 1998, Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin: Journal of Geophysical Research: Solid Earth, 103, 7187–7210, doi: 10.1029/97JB03536.CrossrefWeb of ScienceGoogle Scholar
  • Zhu, H., S. Li, S. Fomel, G. Stadler, and O. Ghattas, 2016, A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration: Geophysics, 81, no. 5, R307–R323, doi: 10.1190/geo2015-0641.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar