This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Marchenko redatuming allows one to use surface seismic reflection data to generate the seismic response from sources at the surface to any point in the subsurface. Without requiring much information about the earth’s properties, the seismic response generated by Marchenko redatuming contains accurate estimates of not only the primaries but also the internal multiples. A target-oriented imaging method, referred to as Marchenko imaging, was implemented for imaging complex structures of the earth using the seismic response obtained through Marchenko redatuming. Taking account of the contribution of primaries and internal multiples, Marchenko imaging produces images that contain fewer artifacts than the images obtained using conventional imaging methods (e.g., reverse time migration) with the same input data. In this study, we applied Marchenko imaging to a field data set acquired at the Gulf of Mexico to produce an image of a subsalt area. We investigated two important and practical aspects of the Marchenko framework: (1) the missing near offsets in marine shot records and (2) the calibration of the reflection data. Finally, we suggested a workflow for processing the marine towed-streamer field data set acquired at the Gulf of Mexico, and we have developed a complete theoretical and practical framework to produce a target-oriented subsalt image using the Marchenko methods. The images obtained from Marchenko imaging are consistent and comparable, for the most part, with conventional migration methods. However, Marchenko imaging achieves improvements in the continuity of the geologic structures and in suppressing the artifacts that are caused by internal multiples.

REFERENCES

  • Bakulin, A., and R. Calvert, 2006, The virtual source method: Theory and case study: Geophysics, 71, no. 4, SI139–SI150, doi: 10.1190/1.2216190.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berryhill, J. R., 1979, Wave equation datuming: Geophysics, 44, 1329–1344, doi: 10.1190/1.1441010.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berryhill, J. R., 1984, Wave equation datuming before stack: Geophysics, 49, 2064–2066, doi: 10.1190/1.1441620.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Broggini, F., and R. Snieder, 2012, Connection of scattering principles: A visual and mathematical tour: European Journal of Physics, 33, 593–613, doi: 10.1088/0143-0807/33/3/593.EJPHD40143-0807CrossrefWeb of ScienceGoogle Scholar
  • Broggini, F., R. Snieder, and K. Wapenaar, 2012, Focusing the wavefield inside an unknown 1D medium: Beyond seismic interferometry: Geophysics, 77, no. 5, A25–A28, doi: 10.1190/geo2012-0060.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Broggini, F., R. Snieder, and K. Wapenaar, 2014, Data-driven wavefield focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples: Geophysics, 79, no. 3, WA107–WA115, doi: 10.1190/geo2013-0307.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • da Costa Filho, C. A., M. Ravasi, and A. Curtis, 2015, Elastic p-and s-wave autofocus imaging with primaries and internal multiples: Geophysics, 80, no. 5, S187–S202, doi: 10.1190/geo2014-0512.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • da Costa Filho, C. A., M. Ravasi, A. Curtis, and G. A. Meles, 2014, Elastodynamic Green’s function retrieval through single-sided Marchenko inverse scattering: Physical Review E, 90, 063201, doi: 10.1103/PhysRevE.90.063201.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • de Hoop, A. T., 1988, Time-domain reciprocity theorems for acoustic wave fields in fluids with relaxation: The Journal of the Acoustical Society of America, 84, 1877–1882, doi: 10.1121/1.397152.CrossrefWeb of ScienceGoogle Scholar
  • Dukalski, M., and K. de Vos, 2017, Marchenko inversion in a strong scattering regime including surface-related multiples: Geophysical Journal International, 212, 760–776.GJINEA0956-540XWeb of ScienceGoogle Scholar
  • Fomel, S., 1997, A variational formulation of the fast marching eikonal solver: Stanford Exploration Project, SEP-95, 127–147.Google Scholar
  • Guitton, A., and J. Claerbout, 2015, Nonminimum phase deconvolution in the log domain: A sparse inversion approach: Geophysics, 80, no. 6, WD11–WD18, doi: 10.1190/geo2015-0016.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kinneging, N., V. Budejicky, C. Wapenaar, and A. Berkhout, 1989, Efficient 2D and 3D shot record redatuming: Geophysical Prospecting, 37, 493–530, doi: 10.1111/j.1365-2478.1989.tb02220.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Ravasi, M., 2017, Rayleigh-Marchenko redatuming for target-oriented, true-amplitude imaging: Geophysics, 82, no. 6, S439–S452, doi: 10.1190/geo2017-0262.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ravasi, M., I. Vasconcelos, A. Kritski, A. Curtis, C. A. d. C. Filho, and G. A. Meles, 2016, Target-oriented Marchenko imaging of a North Sea field: Geophysical Journal International, 205, 99–104, doi: 10.1093/gji/ggv528.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Rose, J. H., 2002, Single-sided autofocusing of sound in layered materials: Inverse Problems, 18, 1923–1934, doi: 10.1088/0266-5611/18/6/329.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Singh, S., R. Snieder, J. Behura, J. van der Neut, K. Wapenaar, and E. Slob, 2015, Marchenko imaging: Imaging with primaries, internal multiples, and free-surface multiples: Geophysics, 80, no. 5, S165–S174, doi: 10.1190/geo2014-0494.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Slob, E., and K. Wapenaar, 2017, Theory for Marchenko imaging of marine seismic data with free surface multiple elimination: 79th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201700800.CrossrefGoogle Scholar
  • Snieder, R., K. Wapenaar, and K. Larner, 2006, Spurious multiples in seismic interferometry of primaries: Geophysics, 71, no. 4, SI111–SI124, doi: 10.1190/1.2211507.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Spetzler, J., and R. Snieder, 2004, The Fresnel volume and transmitted waves: Geophysics, 69, 653–663, doi: 10.1190/1.1759451.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Staring, M., R. Pereira, H. Douma, J. van der Neut, and C. Wapenaar, 2017, Adaptive double-focusing method for source-receiver Marchenko redatuming on field data: 87th Annual International Meeting, SEG, Expanded Abstracts, 4808–4812.AbstractGoogle Scholar
  • van der Neut, J., J. Thorbecke, K. Mehta, E. Slob, and K. Wapenaar, 2011, Controlled-source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media: Geophysics, 76, no. 4, SA63–SA76, doi: 10.1190/1.3580633.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • van der Neut, J., I. Vasconcelos, and K. Wapenaar, 2015a, On Green’s function retrieval by iterative substitution of the coupled Marchenko equations: Geophysical Journal International, 203, 792–813, doi: 10.1093/gji/ggv330.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • van der Neut, J., K. Wapenaar, J. Thorbecke, and E. Slob, 2015b, Practical challenges in adaptive Marchenko imaging: 85th Annual International Meeting, SEG, Expanded Abstracts, 4505–4509.AbstractGoogle Scholar
  • Vasconcelos, I., R. Snieder, and H. Douma, 2009, Representation theorems and Green’s function retrieval for scattering in acoustic media: Physical Review E, 80, 036605, doi: 10.1103/PhysRevE.80.036605.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Vasconcelos, I., and J. van der Neut, 2016, Full-wavefield redatuming of perturbed fields with the Marchenko method: 78th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201600624.CrossrefGoogle Scholar
  • Vasconcelos, I., K. Wapenaar, J. van der Neut, C. Thomson, and M. Ravasi, 2015, Using inverse transmission matrices for Marchenko redatuming in highly complex media: 85th Annual International Meeting, SEG, Expanded Abstracts, 5081–5086.AbstractGoogle Scholar
  • Wapenaar, K., 2014, Single-sided Marchenko focusing of compressional and shear waves: Physical Review E, 90, 063202, doi: 10.1103/PhysRevE.90.063202.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179–194, doi: 10.1111/j.1365-246X.2003.02152.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. Thorbecke, J. van der Neut, F. Broggini, E. Slob, and R. Snieder, 2014a, Green’s function retrieval from reflection data, in absence of a receiver at the virtual source position: The Journal of the Acoustical Society of America, 135, 2847–2861, doi: 10.1121/1.4869083.CrossrefWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. Thorbecke, J. van der Neut, F. Broggini, E. Slob, and R. Snieder, 2014b, Marchenko imaging: Geophysics, 79, no. 3, WA39–WA57, doi: 10.1190/geo2013-0302.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. van der Neut, and E. Slob, 2016, On the role of multiples in Marchenko imaging: Geophysics, 82, no. 1, A1–A5, doi: 10.1190/geo2016-0323.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar