This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data

Authors:

Representation of a signal in a sparse way is a useful and popular methodology in signal-processing applications. Among several widely used sparse transforms, dictionary learning (DL) algorithms achieve most attention due to their ability in making data-driven nonanalytical (nonfixed) atoms. Various DL methods are well-established in seismic data processing due to the inherent low-rank property of this kind of data. We have introduced a novel data-driven 3D DL algorithm that is extended from the 2D nonnegative DL scheme via the multitasking strategy for random noise attenuation of seismic data. In addition to providing parts-based learning, we exploit nonnegativity constraint to induce sparsity on the data transformation and reduce the space of the solution and, consequently, the computational cost. In 3D data, we consider each slice as a task. Whereas 3D seismic data exhibit high correlation between slices, a multitask learning approach is used to enhance the performance of the method by sharing a common sparse coefficient matrix for the whole related tasks of the data. Basically, in the learning process, each task can help other tasks to learn better and thus a sparser representation is obtained. Furthermore, different from other DL methods that use a limited random number of patches to learn a dictionary, the proposed algorithm can take the whole data information into account with a reasonable time cost and thus can obtain an efficient and effective denoising performance. We have applied the method on synthetic and real 3D data, which demonstrated superior performance in random noise attenuation when compared with state-of-the-art denoising methods such as MSSA, BM4D, and FXY predictive filtering, especially in amplitude and continuity preservation in low signal-to-noise ratio cases and fault zones.

REFERENCES

  • Abma, R., and J. Claerbout, 1995, Lateral prediction for noise attenuation by tx and fx techniques: Geophysics, 60, 1887–1896, doi: 10.1190/1.1443920.GPYSA70016-8033
  • Anvari, R., M. A. N. Siahsar, S. Gholtashi, A. R. Kahoo, and M. Mohammadi, 2017, Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation: IEEE Transactions on Geoscience and Remote Sensing, 1–8, doi: 10.1109/TGRS.2017.2730228.
  • Badea, L., 2008, Extracting gene expression profiles common to colon and pancreatic adenocarcinoma using simultaneous nonnegative matrix factorization: Pacific Symposium on Biocomputing, Citeseer, 279–290.
  • Beckouche, S., and J. Ma, 2014, Simultaneous dictionary learning and denoising for seismic data: Geophysics, 79, no. 3, A27–A31, doi: 10.1190/geo2013-0382.1.GPYSA70016-8033
  • Bioucas-Dias, J. M., and J. M. P. Nascimento, 2008, Hyperspectral subspace identification: IEEE Transactions on Geoscience and Remote Sensing, 46, 2435–2445, doi: 10.1109/TGRS.2008.918089.IGRSD20196-2892
  • Bonar, D., and M. Sacchi, 2012, Denoising seismic data using the nonlocal means algorithm: Geophysics, 77, no. 1, A5–A8, doi: 10.1190/geo2011-0235.1.GPYSA70016-8033
  • Boßmann, F., and J. Ma, 2015, Asymmetric chirplet transform for sparse representation of seismic data: Geophysics, 80, no. 6, WD89–WD100, doi: 10.1190/geo2015-0063.1.GPYSA70016-8033
  • Chen, K., and M. D. Sacchi, 2014, Robust reduced-rank filtering for erratic seismic noise attenuation: Geophysics, 80, no. 1, V1–V11, doi: 10.1190/geo2014-0116.1.GPYSA70016-8033
  • Chen, Y., 2015, Iterative deblending with multiple constraints based on shaping regularization: IEEE Geoscience and Remote Sensing Letters, 12, 2247–2251, doi: 10.1109/LGRS.2015.2463815.
  • Chen, Y., 2017, Fast dictionary learning for random noise attenuation of multidimensional seismic data: Geophysical Journal International, 209, 21–31, doi: 10.1093/gji/ggw492.GJINEA0956-540X
  • Chen, Y., and S. Fomel, 2015a, EMD-seislet transform: 85th Annual International Meeting, SEG, Expanded Abstracts, 4775–4778.
  • Chen, Y., and S. Fomel, 2015b, Random noise attenuation using local signal-and-noise orthogonalization: Geophysics, 80, no. 6, WD1–WD9, doi: 10.1190/geo2014-0227.1.GPYSA70016-8033
  • Chen, Y., S. Fomel, and J. Hu, 2014, Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization: Geophysics, 79, no. 5, V179–V189, doi: 10.1190/geo2013-0449.1.GPYSA70016-8033
  • Chen, Y., and J. Ma, 2014, Random noise attenuation by f-x empirical-mode decomposition predictive filtering: Geophysics, 79, no. 3, V81–V91, doi: 10.1190/geo2013-0080.1.GPYSA70016-8033
  • Chen, Y., J. Ma, and S. Fomel, 2016b, Double-sparsity dictionary for seismic noise attenuation: Geophysics, 81, no. 2, V103–V116, doi: 10.1190/geo2014-0525.1.GPYSA70016-8033
  • Chen, Y., D. Zhang, Z. Jin, X. Chen, S. Zu, W. Huang, and S. Gan, 2016a, Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method: Geophysical Journal International, 206, 1695–1717, doi: 10.1093/gji/ggw230.GJINEA0956-540X
  • Daubechies, I., M. Defrise, and C. De Mol, 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics, 57, 1413–1457, doi: 10.1002/(ISSN)1097-0312.CPMAMV0010-3640
  • Ding, C., C. Xu, and D. Tao, 2015, Multi-task pose-invariant face recognition: IEEE Transactions on Image Processing, 24, 980–993, doi: 10.1109/TIP.2015.2390959.IIPRE41057-7149
  • Ding, C. H., T. Li, and M. I. Jordan, 2010, Convex and semi-nonnegative matrix factorizations: IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 45–55, doi: 10.1109/TPAMI.2008.277.ITPIDJ0162-8828
  • Dong, W., X. Li, L. Zhang, and G. Shi, 2011, Sparsity-based image denoising via dictionary learning and structural clustering:IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 457–464.
  • Durrani, T. S., and D. Bisset, 1984, The Radon transform and its properties: Geophysics, 49, 1180–1187, doi: 10.1190/1.1441747.GPYSA70016-8033
  • Elad, M., and M. Aharon, 2006, Image denoising via sparse and redundant representations over learned dictionaries: IEEE Transactions on Image Processing, 15, 3736–3745, doi: 10.1109/TIP.2006.881969.
  • Engan, K., S. O. Aase, and J. H. Husoy, 1999, Method of optimal directions for frame design: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2443–2446.
  • Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, no. 3, V25–V38, doi: 10.1190/1.3380591.GPYSA70016-8033
  • Gillis, N., and F. Glineur, 2012, Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization: Neural Computation, 24, 1085–1105, doi: 10.1162/NECO_a_00256.NEUCEB0899-7667
  • Gülünay, N., 2000, Noncausal spatial prediction filtering for random noise reduction on 3-D poststack data: Geophysics, 65, 1641–1653, doi: 10.1190/1.1444852.GPYSA70016-8033
  • Herrmann, F. J., U. Böniger, and D. J. E. Verschuur, 2007, Non-linear primary-multiple separation with directional curvelet frames: Geophysical Journal International, 170, 781–799, doi: 10.1111/j.1365-246X.2007.03360.x.GJINEA0956-540X
  • Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173, 233–248, doi: 10.1111/j.1365-246X.2007.03698.x.GJINEA0956-540X
  • Huang, W., R. Wang, X. Chen, and Y. Chen, 2017a, Double least-squares projections method for signal estimation: IEEE Transactions on Geoscience and Remote Sensing, 55, 4111–4129, doi: 10.1109/TGRS.2017.2688420.IGRSD20196-2892
  • Huang, W., R. Wang, Y. Chen, H. Li, and S. Gan, 2016, Damped multichannel singular spectrum analysis for 3D random noise attenuation: Geophysics, 81, no. 4, V261–V270, doi: 10.1190/geo2015-0264.1.GPYSA70016-8033
  • Huang, W., R. Wang, Y. Yuan, S. Gan, and Y. Chen, 2017b, Signal extraction using randomized-order multichannel singular spectrum analysis: Geophysics, 82, no. 2, V69–V84, doi: 10.1190/geo2015-0708.1.GPYSA70016-8033
  • Ibrahim, A., and M. D. Sacchi, 2014, Simultaneous source separation using a robust Radon transform: Geophysics, 79, no. 1, V1–V11, doi: 10.1190/geo2013-0168.1.GPYSA70016-8033
  • Kim, H., and H. Park, 2007, Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis: Bioinformatics, 23, 1495–1502, doi: 10.1093/bioinformatics/btm134.BOINFP1367-4803
  • Kong, D., and Z. Peng, 2015, Seismic random noise attenuation using shearlet and total generalized variation: Journal of Geophysics and Engineering, 12, 1024–1035, doi: 10.1088/1742-2132/12/6/1024.
  • Kong, D., Z. Peng, Y. He, and H. Fan, 2016, Seismic random noise attenuation using directional total variation in the shearlet domain: Journal of Seismic Exploration, 25, 321–338.
  • Kumar, V., and F. J. Herrmann, 2009, Incoherent noise suppression with curvelet-domain sparsity: 79th Annual International Meeting, SEG, Expanded Abstracts, 3356–3360.
  • Lee, D. D., and H. S. Seung, 1999, Learning the parts of objects by non-negative matrix factorization: Nature, 401, 788–791, doi: 10.1038/44565.
  • Lee, D. D., and H. S. Seung, 2001, Algorithms for non-negative matrix factorization, in M. I. JordanY. LeCunS. A. Solla, eds., Advances in neural information processing systems: MIT Press: 556–562.
  • Lee, K., S. Tak, and J. C. Ye, 2011, A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion: IEEE Transactions on Medical Imaging, 30, 1079–1089, doi: 10.1109/TMI.2010.2097275.ITMID40278-0062
  • Li, Y., and A. Ngom, 2012, A new kernel non-negative matrix factorization and its application in microarray data analysis: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 371–378.
  • Li, Y., and A. Ngom, 2014, Versatile sparse matrix factorization: Theory and applications: Neurocomputing, 145, 23–29, doi: 10.1016/j.neucom.2014.05.076.NRCGEO0925-2312
  • Liu, C., D. Wang, B. Hu, and T. Wang, 2016a, Seismic deconvolution with shearlet sparsity constrained inversion: Journal of Applied Geophysics, 25, 433–445.JAGPEA0926-9851
  • Liu, G., X. Chen, J. Du, and K. Wu, 2012, Random noise attenuation using f-x regularized nonstationary autoregression: Geophysics, 77, no. 2, V61–V69, doi: 10.1190/geo2011-0117.1.GPYSA70016-8033
  • Liu, T., Y. Si, D. Wen, M. Zang, and L. Lang, 2016b, Dictionary learning for VQ feature extraction in ECG beats classification: Expert Systems with Applications, 53, 129–137, doi: 10.1016/j.eswa.2016.01.031.ESAPEH0957-4174
  • Liu, Y., S. Fomel, and C. Liu, 2015, Signal and noise separation in prestack seismic data using velocity-dependent seislet transform: Geophysics, 80, no. 6, WD117–WD128, doi: 10.1190/geo2014-0234.1.GPYSA70016-8033
  • Liu, Y., N. Liu, and C. Liu, 2014, Adaptive prediction filtering in txy domain for random noise attenuation using regularized nonstationary autoregression: Geophysics, 80, no. 1, V13–V21, doi: 10.1190/geo2014-0011.1.GPYSA70016-8033
  • Maggioni, M., V. Katkovnik, K. Egiazarian, and A. Foi, 2013, A nonlocal transform-domain filter for volumetric data denoising and reconstruction: IEEE Transactions on Image Processing, 22, 119–133, doi: 10.1109/TIP.2012.2210725.
  • Meinshausen, N., and B. Yu, 2009, Lasso-type recovery of sparse representations for high-dimensional data: The Annals of Statistics, 37, 246–270, doi: 10.1214/07-AOS582.
  • Mousavi, S. M., S. P. Horton, C. A. Langston, and B. Samei, 2016b, Seismic features and automatic discrimination of deep and shallow induced-microearthquakes using neural network and logistic regression: Geophysical Journal International, 207, 29–46, doi: 10.1093/gji/ggw258.GJINEA0956-540X
  • Mousavi, S. M., and C. A. Langston, 2016a, Adaptive noise estimation and suppression for improving microseismic event detection: Journal of Applied Geophysics, 132, 116–124, doi: 10.1016/j.jappgeo.2016.06.008.JAGPEA0926-9851
  • Mousavi, S. M., and C. A. Langston, 2016b, Hybrid seismic denoising using higher‐order statistics and improved wavelet block thresholding: Bulletin of the Seismological Society of America, 106, 1380–1393, doi: 10.1785/0120150345.BSSAAP0037-1106
  • Mousavi, S. M., C. A. Langston, and S. P. Horton, 2016a, Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform: Geophysics, 81, no. 4, V341–V355, doi: 10.1190/geo2015-0598.1.GPYSA70016-8033
  • Nazari Siahsar, M. A., S. Gholtashi, V. Abolghasemi, and Y. Chen, 2017b, Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning: Signal Processing, 141, 309–321, doi: 10.1016/j.sigpro.2017.06.017.SPRODR0165-1684
  • Nazari Siahsar, M. A., S. Gholtashi, A. R. Kahoo, H. Marvi, and A. Ahmadifard, 2016, Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition: Geophysics, 81, no. 2, V117–V124, doi: 10.1190/geo2015-0341.1.GPYSA70016-8033
  • Nazari Siahsar, M. A., S. Gholtashi, E. Olyaei Torshizi, W. Chen, and Y. Chen, 2017a, Simultaneous denoising and interpolation of 3D seismic data via damped data-driven optimal singular value shrinkage: IEEE Geoscience and Remote Sensing Letters, 14, 1086–1090, doi: 10.1109/LGRS.2017.2697942.
  • Oropeza, V., and M. Sacchi, 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis: Geophysics, 76, no. 3, V25–V32, doi: 10.1190/1.3552706.GPYSA70016-8033
  • Qu, S., H. Zhou, R. Liu, Y. Chen, S. Zu, S. Yu, J. Yuan, and Y. Yang, 2016, Deblending of simultaneous-source seismic data using fast iterative shrinkage-thresholding algorithm with firm-thresholding: Acta Geophysica, 64, 1064–1092, doi: 10.1515/acgeo-2016-0043.
  • Shan, H., J. Ma, and H. Yang, 2009, Comparisons of wavelets, contourlets and curvelets in seismic denoising: Journal of Applied Geophysics, 69, 103–115, doi: 10.1016/j.jappgeo.2009.08.002.JAGPEA0926-9851
  • Trad, D., T. Ulrych, and M. Sacchi, 2003, Latest views of the sparse Radon transform: Geophysics, 68, 386–399, doi: 10.1190/1.1543224.GPYSA70016-8033
  • Trickett, S., 2008, F-xy Cadzow noise suppression: 78th Annual International Meeting, SEG, Expanded Abstracts, 2586–2590.
  • Tropp, J. A., and A. C. Gilbert, 2007, Signal recovery from random measurements via orthogonal matching pursuit: IEEE Transactions on Information Theory, 53, 4655–4666, doi: 10.1109/TIT.2007.909108.IETTAW0018-9448
  • Wang, B., R.-S. Wu, X. Chen, and J. Li, 2015a, Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform: Geophysical Journal International, 201, 1180–1192.GJINEA0956-540X
  • Wang, L., Y. Sun, and X. Cai, 2015b, Inpainting of historical seismograms using sparse representation method: Geophysical Journal International, 200, 679–691.GJINEA0956-540X
  • Ye, M., Y. Qian, and J. Zhou, 2015, Multitask sparse nonnegative matrix factorization for joint spectral-spatial hyperspectral imagery denoising: IEEE Transactions on Geoscience and Remote Sensing, 53, 2621–2639, doi: 10.1109/TGRS.2014.2363101.IGRSD20196-2892
  • Yu, S., J. Ma, X. Zhang, and M. D. Sacchi, 2015, Interpolation and denoising of high-dimensional seismic data by learning a tight frame: Geophysics, 80, no. 5, V119–V132, doi: 10.1190/geo2014-0396.1.GPYSA70016-8033
  • Zhang, C., Y. Li, H. Lin, and B. Yang, 2015, Signal preserving and seismic random noise attenuation by Hurst exponent based time-frequency peak filtering: Geophysical Journal International, 203, 901–909, doi: 10.1093/gji/ggv340.GJINEA0956-540X
  • Zhang, R., and T. J. Ulrych, 2003, Physical wavelet frame denoising: Geophysics, 68, 225–231, doi: 10.1190/1.1543209.GPYSA70016-8033
  • Zhao, X., Y. Li, G. Zhuang, C. Zhang, and X. Han, 2016, 2-D TFPF based on Contourlet transform for seismic random noise attenuation: Journal of Applied Geophysics, 129, 158–166, doi: 10.1016/j.jappgeo.2016.03.030.JAGPEA0926-9851
  • Zhou, M., H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, 2012, Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images: IEEE Transactions on Image Processing, 21, 130–144, doi: 10.1109/TIP.2011.2160072.IIPRE41057-7149
  • Zhou, Y., J. Gao, W. Chen, and P. Frossard, 2016, Seismic simultaneous source separation via patchwise sparse representation: IEEE Transactions on Geoscience and Remote Sensing, 54, 5271–5284, doi: 10.1109/TGRS.2016.2559514.IGRSD20196-2892
  • Zu, S., H. Zhou, Y. Chen, S. Qu, X. Zou, H. Chen, and R. Liu, 2016, A periodically varying code for improving deblending of simultaneous sources in marine acquisition: Geophysics, 81, no. 3, V213–V225, doi: 10.1190/geo2015-0447.1.GPYSA70016-8033