This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir

Authors:

We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.

REFERENCES

  • Arntsen, B., and J. M. Carcione, 2001, Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner sandstone: Geophysics, 66, 890–896, doi: 10.1190/1.1444978.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Artman, B., M. Duclos, B. Birkelo, F. Huguet, J. F. Dutzer, and R. Habiger, 2011, Low-frequency seismic survey at a gas storage reservoir: 73rd Annual Conference and Exhibition, EAGE, Extended Abstracts, P331.Google Scholar
  • Artman, B., I. Podladtchikov, and B. Witten, 2010, Source location using time-reverse imaging: Geophysical Prospecting, 58, 861–873, doi: 10.1111/j.1365-2478.2010.00911.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Bard, P.-Y., 1999, Microtremor measurements: A tool for site effect estimation?, in Irikura, K.K. KudoK. OkadaT. Sasatami, eds., The effects of surface geology on seismic motion: Balkema, 1251–1279.Google Scholar
  • Batzle, M., and Z. Wang, 1992, Seismic properties of pore fluids: Geophysics, 57, 1396–1408, doi: 10.1190/1.1443207.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berryman, J. G., 1999, Origin of Gassmann’s equations: Geophysics, 64, 1627–1629, doi: 10.1190/1.1444667.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berryman, J. G., and H. F. Wang, 2001, Dispersion in poroelastic systems: Physical Review E, 64, 011303, doi: 10.1103/PhysRevE.64.011303.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Biot, M. A., 1941, General theory of three-dimensional consolidation: Journal of Applied Physics, 12, 155–164, doi: 10.1063/1.1712886.JAPIAU0021-8979CrossrefGoogle Scholar
  • Biot, M. A., 1962, Mechanics of deformation and acoustic propagation in porous media: Journal of Applied Physics, 33, 1482–1498, doi: 10.1063/1.1728759.JAPIAU0021-8979CrossrefWeb of ScienceGoogle Scholar
  • Bonnefoy-Claudet, S., F. Cotton, and P. Bard, 2006, The nature of noise wavefield and its applications for site effect studies: A literature review: Earth-Science Reviews, 79, 205–227, doi: 10.1016/j.earscirev.2006.07.004.ESREAV0012-8252CrossrefWeb of ScienceGoogle Scholar
  • Bourbié, T., O. Coussy, and B. Zinszner, 1987, Acoustics of porous media: Editions Technip.Google Scholar
  • Carcione, J. M., J. E. Santos, and S. Picotti, 2011, Anisotropic poroelasticity and wave-induced fluid flow: Harmonic finite-element simulations: Geophysical Journal International, 186, 1245–1254, doi: 10.1111/j.1365-246X.2011.05101.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50, 705–708, doi: 10.1190/1.1441945.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Chapman, M., E. Liu, and X.-Y. Li, 2006, The influence of fluid-sensitive dispersion and attenuation on AVO analysis: Geophysical Journal International, 167, 89–105, doi: 10.1111/gji.2006.167.issue-1.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Dangel, S., M. E. Shaepman, E. P. Stoll, R. Carniel, O. Barzandji, E.-D. Rode, and J. M. Singer, 2003, Phenomenology of tremor-like signals observed over hydrocarbon reservoirs: Journal of Volcanology and Geothermal Research, 128, 135–158, doi: 10.1016/S0377-0273(03)00251-8.JVGRDQ0377-0273CrossrefWeb of ScienceGoogle Scholar
  • Dasgupta, R., and R. A. Clark, 1998, Estimation of Q from surface seismic reflection data: Geophysics, 63, 2120–2128, doi: 10.1190/1.1444505.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dutta, N. C., and H. Odé, 1979a, Attenuation and dispersion of compressional waves in fluid filled porous rocks with partial gas saturation (White model) — Part I: Biot theory: Geophysics, 44, 1777–1788, doi: 10.1190/1.1440938.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dutta, N. C., and H. Odé, 1979b, Attenuation and dispersion of compressional waves in fluid filled porous rocks with partial gas saturation (White model) — Part II: Results: Geophysics, 44, 1789–1805, doi: 10.1190/1.1440939.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Emmerich, H., and M. Korn, 1987, Incorporation of attenuation into time-domain computations of seismic wavefields: Geophysics, 52, 1252–1264, doi: 10.1190/1.1442386.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fäh, D., F. Kind, and D. Giardini, 2003, Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects: Journal of Seismology, 7, 449–467, doi: 10.1023/B:JOSE.0000005712.86058.42.DXUEF71383-4649CrossrefWeb of ScienceGoogle Scholar
  • Gassmann, F., 1951, Über die Elastizität poröser Medien: Vierteljahreschrift der Naturforschenden Gesellschaft in Zürich, 96, 1–23.Google Scholar
  • Goertz, A., B. Schechinger, B. Witten, M. Koerbe, and P. Krajewski, 2012, Extracting subsurface information from ambient seismic noise — A case study from Germany: Geophysics, 77, no. 4, KS13–KS31, doi: 10.1190/geo2011-0306.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Hanssen, P., and S. Bussat, 2008, Pitfalls in the analysis of low frequency passive seismic data: First Break, 26, 111–119.0263-5046CrossrefGoogle Scholar
  • Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy-saturated porous media: Journal of the Acoustical Society of America, 110, 682–694, doi: 10.1121/1.1381021.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • Lambert, M.-A., T. Nguyen, E. H. Saenger, and S. M. Schmalholz, 2011, Spectral analysis of ambient ground-motion — Noise reduction techniques and a methodology for mapping horizontal inhomogeneity: Journal of Applied Geophysics, 74, 100–113, doi: 10.1016/j.jappgeo.2011.04.007.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Lambert, M.-A., S. M. Schmalholz, E. H. Saenger, and B. Steiner, 2009, Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, Austria: Geophysical Prospecting, 57, 393–411, doi: 10.1111/gpr.2009.57.issue-3.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Masson, Y. J., and S. R. Pride, 2007, Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity: Journal of Geophysical Research, 112, B03204, doi: 10.1029/2006JB004592.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools for seismic analysis of porous media, 2nd ed., Cambridge University Press.CrossrefGoogle Scholar
  • Moczo, P., and J. Kristek, 2005, On the rheological models used for time-domain methods of seismic wave propagation: Geophysical Research Letters, 32, L01306, doi: 10.1029/2004GL021598.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Müller, T. M., and B. Gurevich, 2004, One-dimensional random patchy saturation model for velocity and attenuation in porous rocks: Geophysics, 69, 1166–1172, doi: 10.1190/1.1801934.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Müller, T. M., B. Gurevich, and M. Lebedev, 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review: Geophysics, 75, no. 5, A147–A164, doi: 10.1190/1.3463417.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface: Railway Technical Research Institute, Quarterly Report, 30, 25–30.Google Scholar
  • Norris, A. N., 1993, Low-frequency dispersion and attenuation in partially saturated rocks: Journal of the Acoustical Society of America, 94, 359–370, doi: 10.1121/1.407101.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • O’Connell, R. J., and B. Budianski, 1978, Measures of dissipation in viscoelastic media: Geophysical Research Letters, 5, 5–8, doi: 10.1029/GL005i001p00005.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Peng, Z., and J. Gomberg, 2010, An integrated perspective of the continuum between earthquakes and slow-slip phenomena: Nature Geoscience, 3, 599–607, doi: 10.1038/ngeo940.1752-0894CrossrefWeb of ScienceGoogle Scholar
  • Pride, S. R., and J. G. Berryman, 2003a, Linear dynamics of double-porosity and dual-permeability materials. I. Governing equations and acoustic attenuation: Physical Review E, 68, doi: 10.1103/PhysRevE.68.036604.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Pride, S. R., and J. G. Berryman, 2003b, Linear dynamics of double-porosity and dual-permeability materials. II. Fluid transport equations: Physical Review E, 68, doi: 10.1103/PhysRevE.68.036603.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Pride, S. R., J. G. Berryman, and J. M. Harris, 2004, Seismic attenuation due to wave-induced flow: Journal of Geophysical Research, 109, B01201, doi: 10.1029/2003JB002639.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Pujol, J., 2003, Elastic wave propagation and generation in seismology: Cambridge University Press.CrossrefGoogle Scholar
  • Quintal, B., S. M. Schmalholz, and Y. Y. Podladchikov, 2009, Low-frequency reflections from a thin layer with high attenuation caused by interlayer flow: Geophysics, 74, no. 1, N15–N23, doi: 10.1190/1.3026620.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Quintal, B., H. Steeb, M. Frehner, and S. M. Schmalholz, 2011, Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media: Journal of Geophysical Research Solid Earth, 116, B01201, doi: 10.1029/2010JB007475.JGEREE0148-0227CrossrefWeb of ScienceGoogle Scholar
  • Quintal, B., H. Steeb, M. Frehner, S. M. Schmalholz, and E. H. Saenger, 2012, Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow: Geophysics, 77, no. 3, L13–L23, doi: 10.1190/geo2011-0233.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Riahi, N., B. Birkelo, and E. H. Saenger, 2011, A statistical strategy to analyzing passive seismic attributes: 73rd Annual Conference and Exhibition, EAGE, Extended Abstracts, P198.CrossrefGoogle Scholar
  • Rubino, J. G., C. L. Ravazzoli, and J. E. Santos, 2009, Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks: Geophysics, 74, no. 1, N1–N13, doi: 10.1190/1.3008544.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Rubino, J. G., D. R. Velis, and M. D. Sacchi, 2011, Numerical analysis of wave-induced fluid flow effects on seismic data: Application to monitoring of CO2 storage at the Sleipner field: Journal of Geophysical Research, 116, B03306, doi: 10.1029/2010JB007997.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Saenger, E. H., N. Gold, and S. A. Shapiro, 2000, Modeling the propagation of elastic waves using a modified finite-difference grid: Wave Motion, 31, 77–92, doi: 10.1016/S0165-2125(99)00023-2.WAMOD90165-2125CrossrefWeb of ScienceGoogle Scholar
  • Saenger, E. H., S. M. Schmalholz, M.-A. Lambert, T. T. Nguyen, A. Torres, S. Metzger, R. M. Habiger, T. Müller, S. Rentsch, and E. Méndez-Hernández, 2009, A passive seismic survey over a gas field: Analysis of low-frequency anomalies: Geophysics, 74, no. 2, O29–O40, doi: 10.1190/1.3078402.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Saenger, E. H., S. A. Shapiro, and Y. Keehm, 2005, Seismic effects of viscous Biot-coupling: Finite difference simulations on micro-scale: Geophysical Research Letters, 32, L14310, doi: 10.1029/2005GL023222.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Santos, J. E., J. G. Rubino, and C. L. Ravazzoli, 2009, A numerical upscaling procedure to estimate effective bulk and shear moduli in heterogeneous fluid-saturated porous media: Computer Methods in Applied Mechanics and Engineering, 198, 2067–2077, doi: 10.1016/j.cma.2009.02.003.CMMECC0045-7825CrossrefWeb of ScienceGoogle Scholar
  • Steiner, B., and E. H. Saenger, 2012, Comparison of 2D and 3D time-reverse imaging — A numerical case study: Computers & Geosciences, 46, 174–182, doi: 10.1016/j.cageo.2011.12.005.CGEODT0098-3004CrossrefWeb of ScienceGoogle Scholar
  • Steiner, B., E. H. Saenger, and S. M. Schmalholz, 2011, Time-reverse imaging with limited S-wave velocity model information: Geophysics, 76, no. 5, MA33–MA40, doi: 10.1190/geo2010-0303.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Steiner, B., E. H. Saenger, and S. M. Schmalholz, 2008, Time reverse modeling of low-frequency microtremors: Application to hydrocarbon reservoir localization: Geophysical Research Letters, 35, L03307, doi: 10.1029/2007GL032097.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • van Mastrigt, P., and A. Al-Dulaijan, 2008, Seismic spectroscopy using amplified 3C geophones: 70th Annual Conference and Exhibition, EAGE, Extended Abstracts, B047.CrossrefGoogle Scholar
  • Vogelaar, B., D. Smeulders, and J. Harris, 2010, Exact expression for the effective acoustics of patchy-saturated rocks: Geophysics, 75, no. 4, N87–N96, doi: 10.1190/1.3463430.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wenzlau, F., J. B. Altmann, and T. M. Müller, 2010, Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids: Journal of Geophysical Research, 115, B07204, doi: 10.1029/2009JB006644.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40, 224–232, doi: 10.1190/1.1440520.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wiechert, E., 1893, Gesetze der elastischen nachwirkung für constante Temperatur: Annalen der Physik, 286, 335–348, 546–570, doi: 10.1002/(ISSN)1521-3889.ANPYA20003-3804CrossrefGoogle Scholar
  • Witten, B., and B. Artman, 2011, Signal-to-noise estimates of time-reverse images: Geophysics, 76, no. 2, MA1–MA10, doi: 10.1190/1.3543570.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhang, J., P. Gerstoft, and P. Shearer, 2009, High-frequency P-wave seismic noise driven by ocean winds: Geophysical Research Letters, 36, L09302, doi: 10.1029/2009GL037761.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Zienkiewicz, O. C., and T. Shiomi, 1984, Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution: International Journal for Numerical and Analytical Methods in Geomechanics, 8, 71–96, doi: 10.1002/(ISSN)1096-9853.IJNGDZ1096-9853CrossrefWeb of ScienceGoogle Scholar