This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Structural characteristics of shallow faults in the Delaware Basin

Authors:

The Delaware Basin of Texas and New Mexico is experiencing elevated levels of seismicity. There have been more than 130 earthquakes with local magnitudes of at least 3.0 recorded between 2017 and 2021, with earthquakes occurring in spatiotemporally isolated and diffuse clusters. Many of these events have been linked to oilfield operations such as hydraulic fracturing and wastewater disposal at multiple subsurface levels; however, the identification and characterization of earthquake-hosting faults have remained elusive. There are two distinct levels of faulting in the central region of the basin where most earthquakes have been measured. These fault systems include a contractional basement-rooted fault system and a shallow extensional fault system. Shallow faults trend parallel to and rotate along with, the azimuth of SHMAX, are vertically decoupled from the basement-rooted faults, accommodate dominantly dip-slip motion, and are the product of more recent processes including regional exhumation and anthropogenic influences. The shallow fault system is composed of northwest–southeast-striking, high angle, and parallel trending faults which delineate a series of elongate, narrow, and extensional graben. Although most apparent in 3D seismic reflection data, these narrow elongate graben features also are observed from interferometric synthetic aperture radar (InSAR) surface deformation measurements and can be delineated using well-located earthquakes. In contrast to the basin-compartmentalizing basement-rooted fault system, shallow faults do not display any shear movement indicators, and they have small throw displacement given their mapped length, producing an anomalous mean throw-to-length ratio of 1:1000. These characteristics indicate that these features are more segmented than can be mapped with conventional subsurface data. Much of the recent seismicity in the south-central Delaware Basin is associated with these faults and InSAR surface deformation observations find that these faults also may be slipping aseismically.

References

  • Adams, D. C., and G. R. Keller, 1996, Precambrian basement geology of the Permian Basin region of West Texas and eastern New Mexico: A geophysical perspective: AAPG Bulletin, 80, 410–431, doi: 10.1306/64ED87FA-1724-11D7-8645000102C1865D.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Adams, J. E., H. N. Frenzel, M. L. Rhodes, and D. P. Johnson, 1951, Starved Pennsylvanian Midland Basin: AAPG Bulletin, 35, 2600–2607.AABUD20149-1423Web of ScienceGoogle Scholar
  • Anderson, E. M., 1951, The dynamics of faulting and dyke formation with applications to Brittan: Oliver and Boyd.Google Scholar
  • Brown, A., 2019, Post-Permian history of the greater Permian Basin area, in S. C. Ruppel, ed., Anatomy of a Paleozoic Basin: The Permian Basin, USA (vol. 1): The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, 97–134.Google Scholar
  • Budnik, R. T., 1986, Left-lateral intraplate deformation along the ancestral rocky mountains: Implications for late Paleozoic plate motions: Tectonophysics, 132, 195–214, doi: 10.1016/0040-1951(86)90032-6.TCTOAM0040-1951CrossrefWeb of ScienceGoogle Scholar
  • Charzynski, K., K. Faith, Z. Fenton, A. Shedeed, M. McKee, S. Bjorlie, and M. Richardson, 2019, Delaware basin horizontal Wolfcamp case study: Mitigating H2S and excessive water production through isolating densely fractured intervals correlative to seismically mapped shallow graben features in the Delaware Mountain Group: Unconventional Resources Technology Conference, SEG, Global Meeting Abstracts, 4126–4141, doi: 10.15530/urtec-2019-1037.AbstractGoogle Scholar
  • Comer, J. B., 1991, Stratigraphic analysis of the upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico: Bureau of Economic Geology, The University of Texas at Austin.CrossrefGoogle Scholar
  • Cook, S., M. McKee, and S. Bjorlie, 2019, Delaware Basin horizontal Wolfcamp case history: HTI fracture analysis to avoid H2S and extraneous water linked to graben features: Unconventional Resources Technology Conference, SEG, Global Meeting Abstracts, 188–202, doi: 10.15530/urtec-2019-452.AbstractGoogle Scholar
  • Cowie, P. A., and C. H. Scholz, 1992, Displacement-length scaling relationship for faults: Data synthesis and discussion: Journal of Structural Geology, 14, 1149–1156, doi: 10.1016/0191-8141(92)90066-6.JSGEDY0191-8141CrossrefWeb of ScienceGoogle Scholar
  • Davis, B. R., and S. Mosher, 2015, Complex structural and fluid flow evolution along the Grenville Front, west Texas: Geosphere, 11, 868–898, doi: 10.1130/GES01098.1.CrossrefWeb of ScienceGoogle Scholar
  • Dickinson, W. R., and T. F. Lawton, 2003, Sequential intercontinental suturing as the ultimate control for Pennsylvanian Ancestral Rocky Mountains deformation: Geology, 31, 609–612, doi: 10.1130/0091-7613(2003)031<0609:SISATU>2.0.CO;2.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Denison, R. E., W. H. J. Burke, E. A. Hetherington, and J. B. Otto, 1971, Basement rock framework of parts of Texas, southern New Mexico and northern Mexico, in K. SeewaldD. Sundeen, eds., The geologic framework of the Chihuahua tectonic belt: West Texas Geological Society Publication, 71–59.Google Scholar
  • Dvory, N. Z., and M. D. Zoback, 2021, Prior oil and gas production can limit the occurrence of injection-induced seismicity: A case study in the Delaware Basin of western Texas and southeastern New Mexico, USA: Geology, 49, 1198–1203, doi: 10.1130/G49015.1.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Ellsworth, W. L., 2013, Injection-induced earthquakes: Science, 341, 1225942, doi: 10.1126/science.1225942.SCIEAS0036-8075CrossrefWeb of ScienceGoogle Scholar
  • Energy Information Administration (EIA), 2018, Permian Basin Wolfcamp Shale Play geology review, U.S. Energy Inf. Adm. Rep, available at https://www.eia.gov/maps/pdf/PermianBasin_Wolfcamp_EIAReport_Oct2018.pdf, accessed 3 January 2022.Google Scholar
  • Energy Information Administration (EIA), 2020, Permian Basin: Wolfcamp, Bone Spring, Delaware Shale Plays of the Delaware Basin, U.S. Energy Inf. Adm. Rep, available at https://www.eia.gov/maps/pdf/Permian_WolfCamp_BoneSpring_Delaware_EIA_Report_Feb2020.pdf, accessed 3 January 2022.Google Scholar
  • Energy Information Administration (EIA), 2021, Permian region, Drill. Product. Rep, available at https://www.eia.gov/petroleum/drilling/pdf/permian.pdf, accessed 3 January 2022.Google Scholar
  • Ewing, T. E., 1991, The tectonic framework of Texas: Text to accompany “The Tectonic Map of Texas”: Bureau of Economic Geology, the University of Texas at Austin.Google Scholar
  • Ewing, T. E., 2015, Extended abstract: Insights from the Texas through time project: Gulf Coast Association of Geological Societies Transactions, 65, 447–453.Google Scholar
  • Ewing, T. E., 2019, Tectonics of the West Texas (Permian) Basin — Origins, structural geology, subsidence, and later modification, in S. C. Ruppel, ed., Anatomy of a Paleozoic Basin: The Permian Basin, USA (vol. 1): The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, 63–96.Google Scholar
  • Ewing, T. E., M. A. Barnes, and R. E. Denison, 2019, Proterozoic foundations of the Permian Basin, West Texas and Southeastern New Mexico — A review, in S. C. Ruppel, ed., Anatomy of a Paleozoic Basin: The Permian Basin, USA (vol. 1): The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, 43–61.Google Scholar
  • Fairhurst, B., T. Ewing, and B. Lindsay, 2021, West Texas (Permian) Super Basin, United States: Tectonics, structural development, sedimentation, petroleum systems, and hydrocarbon reserves: AAPG Bulletin, 105, 1099–1147, doi: 10.1306/03042120130.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Ferrill, D. A., and A. P. Morris, 2003, Dilational normal faults: Journal of Structural Geology, 25, 183–196, doi: 10.1016/S0191-8141(02)00029-9.JSGEDY0191-8141CrossrefWeb of ScienceGoogle Scholar
  • Ferrill, D. A., A. P. Morris, R. N. McGinnis, K. J. Smart, S. S. Wigginton, and N. J. Hill, 2017, Mechanical stratigraphy and normal faulting: Journal of Structural Geology, 94, 275–302, doi: 10.1016/j.jsg.2016.11.010.JSGEDY0191-8141CrossrefWeb of ScienceGoogle Scholar
  • Flawn, P. T., 1956, Basement rocks of Texas and Southeast New Mexico: The University of Texas at Austin, Bureau of Economic Geology.Google Scholar
  • Frenzel, H. N., R. R. Bloomer, R. B. Cline, J. M. Cys, J. E. Galley, W. R. Gibson, J. M. Hills, W. E. King, W. R. Seager, F. E. Kottlowski, S. Thompson III, G. C. Luff, B. T. Pearson, and D. C. van Siclen, 1988, The Permian Basin region, in L. L. Sloss, ed., Sedimentary cover — North American Craton U.S., D-2: Geological Society of America, 261–306.CrossrefGoogle Scholar
  • Frohlich, C., H. de Shon, B. Stump, C. Hayward, M. Hornbach, and J. I. Walter, 2016, A historical review of induced earthquakes in Texas: Seismological Research Letters, 87, 1022–1038, doi: 10.1785/0220160016.SRLEEG0895-0695CrossrefWeb of ScienceGoogle Scholar
  • Frohlich, C., C. Hayward, J. Rosenblit, C. Aiken, P. Hennings, A. Savvaidis, C. Lemons, E. Horne, J. I. Walter, and H. R. DeShon, 2020, Onset and cause of increased seismic activity near Pecos, West Texas, United States, from observations at the Lajitas TXAR seismic array: Journal of Geophysical Research: Solid Earth, 125, e2019JB017737, doi: 10.1029/2019JB017737.CrossrefWeb of ScienceGoogle Scholar
  • Fu, Q., R. W. Baumgardner Jr., and H. S. Hamlin, 2020, Early Permian (Wolfcampian) succession in the Permian Basin: Icehouse platform, slope carbonates, and basinal mudrocks, in S. C. Ruppel, ed., Anatomy of a Paleozoic basin: The Permian Basin, USA: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285 and AAPG Memoir 118, 185–225.Google Scholar
  • Galley, J. E., 1958, Oil and geology in the Permian Basin of Texas and New Mexico, in L. G. Weeks, ed., Habitat of oil: AAPG, 125, 395–446.Google Scholar
  • Gardiner, W. B., 1990, Fault fabric and structural subprovinces of the Central Basin platform: A model for strike-slip movement, in J. E. FlisR. C. Price, eds., Permian Basin oil and gas fields: Innovative ideas in exploration and development: West Texas Geological Society, Publication 90.87, 15–27.Google Scholar
  • Gardner, M. H., 1992, Sequence stratigraphy of eolian-derived turbidites: Deep water sedimentation patterns along an arid carbonate platform and their impact on hydrocarbon recovery in Delaware Mountain Group reservoirs, West Texas, in D. H. MrukB. C. Curran, eds., Permian Basin exploration and production strategies: Applications of sequence stratigraphic and reservoir characterization concepts: West Texas Geological Society, Publication 92.91, 7–11.Google Scholar
  • Ge, J., J.-P. Nicot, K. M. Smye, S. A. Hosseini, S. Gao, and C. L. Breton, 2022, Recent water disposal and pore pressure evolution in the Delaware Mountain Group, Delaware Basin, Southeast New Mexico and West Texas: Journal of Hydrology: Regional Studies, 40, 101041, doi: 10.1016/j.ejrh.2022.101041.CrossrefWeb of ScienceGoogle Scholar
  • Grigoratos, I., A. Savvaidis, and E. Rathje, 2022, Distinguishing the causal factors of induced seismicity in the Delaware Basin: Hydraulic fracturing or wastewater disposal? Seismological Research Letters, doi: 10.1785/0220210320.SRLEEG0895-0695CrossrefGoogle Scholar
  • Gudmundsson, A., G. De Guidi, and S. Scudero, 2013, Length-displacement scaling and fault growth: Tectonophysics, 608, 1298–1309, doi: 10.1016/j.tecto.2013.06.012.TCTOAM0040-1951CrossrefWeb of ScienceGoogle Scholar
  • Hardage, B. A., 2015, Pitfall experiences when interpreting complex structure with low-quality seismic images: Interpretation, 3, no. 1, SB29–SB37, doi: 10.1190/INT-2014-0118.1.AbstractGoogle Scholar
  • Hardage, B. A., and R. P. Major, 1998, Integrated strategies for carbonate reservoir reserve growth: An example from the Ellenburger Group, Permian Basin, West Texas: National Energy Technology Laboratory.Google Scholar
  • Hardage, B. A., V. M. Pendleton, R. P. Major, G. B. Asquith, D. Schultz-Ela, and D. E. Lancaster, 1999, Using petrophysics and cross-section balancing to interpret complex structure in a limited-quality 3-D seismic image: Geophysics, 64, 1760–1773, doi: 10.1190/1.1444682.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Haruna, K. A., O. J. Ojo, and W. Odufisan, 2014, Subsurface mapping and reservoir evaluation of West Waha and Worsham-Bayer field area of southeastern Delaware Basin, West Texas: The Pacific Journal of Science and Technology, 15, 360–374.Google Scholar
  • Hennings, P., N. Dvory, E. Horne, P. Li, A. Savvaidis, and M. Zoback, 2021, Stability of the fault systems that host-induced earthquakes in the Delaware Basin of West Texas and Southeast New Mexico: The Seismic Record, 1, 96–106, doi: 10.1785/0320210020.CrossrefGoogle Scholar
  • Hennings, P. H., 1994, Structural transect of the southern Chihuahua Fold Belt between Ojinaga and Aldama, Chihuahua, Mexico: Tectonics, 13, 1445–1460, doi: 10.1029/94TC00800.TCTNDM0278-7407CrossrefWeb of ScienceGoogle Scholar
  • Hennings, P. H., J. Lund Snee, J. L. Osmond, H. R. DeShon, R. Dommisse, E. Horne, C. Lemons, M. D. Zoback, J. E. L. Snee, J. L. Osmond, H. R. DeShon, R. Dommisse, E. Horne, C. Lemons, M. D. Zoback, 2019, Injection-induced seismicity and fault-slip potential in the Fort Worth Basin, Texas: Bulletin of the Seismological Society of America, 109, 1615–1634, doi: 10.1785/0120190017.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Hentz, T. F., and C. D. Henry, 1989, Evaporite-hosted native sulfur in Trans-Pecos Texas: Relations to late-phase Basin and range deformation: Geology, 17, 400, doi: 10.1130/0091-7613(1989)017<0400:EHNSIT>2.3.CO;2.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Henry, C. D., J. K. Gluck, N. T. Bockoven, and J. G. Price, 1985, Summary of the tectonic development of Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology.Google Scholar
  • Henry, C. D., and J. G. Price, 1986, Early basin and range development in Trans-Pecos Texas and adjacent Chihuahua: Magmatism and orientation, timing, and style of extension: Journal of Geophysical Research: Solid Earth, 91, 6213–6224, doi: 10.1029/JB091iB06p06213.CrossrefWeb of ScienceGoogle Scholar
  • Hills, J. M., 1963, Late Paleozoic tectonics and mountain ranges, Western Texas to Southern Colorado: AAPG Bulletin, 47, 360, doi: 10.1306/BC7439E5-16BE-11D7-8645000102C1865D.AABUD20149-1423CrossrefGoogle Scholar
  • Hills, J. M., 1970, Late Paleozoic structural directions in southern Permian Basin, west Texas and southeastern New Mexico: AAPG Bulletin, 54, 1809–1827, doi: 10.1306/5D25CC3B-16C1-11D7-8645000102C1865D.AABUD20149-1423CrossrefGoogle Scholar
  • Hills, J. M., 1984, Sedimentation, tectonism, and hydrocarbon generation in Delaware Basin, west Texas and southeastern New Mexico: AAPG Bulletin, 68, 250–267, doi: 10.1306/AD460A08-16F7-11D7-8645000102C1865D.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Horak, R. L., 1985, Trans-Pecos tectonism and its effect on the Permian Basin, in P. W. DickersonW. R. Muehlberger, eds., Structure and tectonics of Trans-Pecos Texas, 85th–81st ed.: West Texas Geological Society, 81–87.Google Scholar
  • Horne, E. A., P. H. Hennings, J. L. Osmond, and H. R. Deshon, 2020, Structural characterization of potentially seismogenic faults in the Fort Worth Basin: Interpretation, 8, no. 2, T323–T347, doi: 10.1190/INT-2019-0188.1.AbstractGoogle Scholar
  • Horne, E. A., P. H. Hennings, and C. K. Zahm, 2021, Basement-rooted faults of the Delaware Basin and Central Basin platform, Permian Basin, west Texas and southeastern New Mexico, in O. A. CallahanP. Eichhubl, eds., The geologic basement of Texas: A volume in honor of Peter T. Flawn: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 286.CrossrefGoogle Scholar
  • Horne, E. A., K. M. Smye, and P. H. Hennings, 2022, Structure and characteristics of the basement in the Fort Worth Basin, in O. A. CallahanP. Eichhubl, eds., The geologic basement of Texas: A volume in honor of Peter T. Flawn: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 286.Google Scholar
  • IHS Energy, 2009, GDS database: Unpublished Geological Data Services database available from IHS Energy, 15 Inverness Way East, Englewood, CO 80112.Google Scholar
  • Kluth, C. F., 1998, Late Paleozoic deformation of interior North America: The Greater Ancestral Rocky Mountains: Discussion: AAPG Bulletin, 82, 2272–2276, doi: 10.1306/00AA7F18-1730-11D7-8645000102C1865D.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Krantz, B., and T. Neely, 2016, Subsurface structural interpretation, in B. KrantzC. OrmandB. Freeman, eds., 3-D structural interpretation: AAPG, 111, 91–109.CrossrefGoogle Scholar
  • Leary, R. J., P. Umhoefer, M. E. Smith, and N. Riggs, 2017, A three-sided orogen: A new tectonic model for Ancestral Rocky Mountain uplift and basin development: Geology, 45, 399–402, doi: 10.1130/G38830.1.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Lomax, A., and A. Savvaidis, 2019, Improving absolute earthquake location in west Texas using probabilistic, proxy ground-truth station corrections: Journal of Geophysical Research: Solid Earth, 124, 11447–11465, doi: 10.1029/2019JB017727.CrossrefWeb of ScienceGoogle Scholar
  • Lund, K., S. E. Box, C. Holm-Denoma, C. A. San Juan, R. J. Blakely, R. W. Saltus, E. D. Anderson, and E. H. Dewitt, 2015, Basement domain map of the conterminous United States and Alaska: U.S. Geological Survey.CrossrefGoogle Scholar
  • McConnell, D. A., 1989, Determination of offset across the northern margin of the Wichita uplift, southwest Oklahoma: Geological Society of America Bulletin, 101, 1317–1332, doi: 10.1130/0016-7606(1989)101<1317:DOOATN>2.3.CO;2.BUGMAF0016-7606CrossrefWeb of ScienceGoogle Scholar
  • Lund Snee, J. E., and M. D. Zoback, 2016, State of stress in Texas: Implications for induced seismicity: Geophysical Research Letters, 43, 10208–10214, doi: 10.1002/2016GL070974.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Lund Snee, J.-E., and M. D. Zoback, 2018, State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity: The Leading Edge, 37, 127–134, doi: 10.1190/tle37020127.1.AbstractGoogle Scholar
  • Lund Snee, J.-E., and M. D. Zoback, 2020, Multiscale variations of the crustal stress field throughout North America: Nature Communications, 11, 1951, doi: 10.1038/s41467-020-15841-5.NCAOBW2041-1723CrossrefWeb of ScienceGoogle Scholar
  • Lund Snee, J.-E., and M. D. Zoback, 2022, State of stress in areas of active unconventional oil and gas development in North America: AAPG Bulletin, 106, 355–385, doi: 10.1306/08102120151.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Mosher, S., 1998, Tectonic evolution of the southern Laurentian Grenville orogenic belt: Bulletin of the Geological Society of America, 110, 1357–1375, doi: 10.1130/0016-7606(1998)110<1357:TEOTSL>2.3.CO;2.BUGMAF0016-7606CrossrefWeb of ScienceGoogle Scholar
  • Morris, A. P., P. H. Hennings, E. A. Horne, and K. M. Smye, 2021, Stability of basement-rooted faults in the Delaware Basin of Texas and New Mexico, USA: Journal of Structural Geology, 149, 104360, doi: 10.1016/j.jsg.2021.104360.JSGEDY0191-8141CrossrefWeb of ScienceGoogle Scholar
  • Muehlberger, W. R., 1965, Late Paleozoic movement along the Texas Lineament: Transactions of the New York Academy of Sciences, 27, 385–392, doi: 10.1111/j.2164-0947.1965.tb02976.x.TNYAAE0028-7113CrossrefGoogle Scholar
  • Muehlberger, W. R., R. E. Denison, and E. G. Lidiak, 1967, Basement rocks in continental interior of United States: AAPG Bulletin, 51, 2351–2380, doi: 10.1306/5D25C277-16C1-11D7-8645000102C1865D.AABUD20149-1423CrossrefGoogle Scholar
  • Nance, H. S., 2020, Upper Permian Delaware Mountain Group: Record of highstand/lowstand platform shedding, in S. Ruppel, ed., Anatomy of a Paleozoic Basin: The Permian Basin, vol. 2: Bureau of Economic Geology, Report of Investigations 285-2, 399–436.Google Scholar
  • New Mexico Tech Seismological Observatory, 2021, Seismic events — New Mexico Tech seismological observatory, available at https://geoinfo.nmt.edu/nmtso/events/home.cfml, accessed 5 February 2021.Google Scholar
  • Poole, F. G., W. J. Perry, R. J. Madrid, and R. Amaya-Martinez, 2005, Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate-tectonic model: Geological Society of America, 393, 543–596.Google Scholar
  • Railroad Commission of Texas, 2022, www.rrc.texas.gov, accessed August 2022.Google Scholar
  • Ross, C. A., 1986, Paleozoic evolution of southern margin of Permian Basin: Geological Society of America Bulletin, 97, 536–554, doi: 10.1130/0016-7606(1986)97<536:PEOSMO>2.0.CO;2.BUGMAF0016-7606CrossrefWeb of ScienceGoogle Scholar
  • Ricketts, J. W., K. E. Karlstrom, A. Priewisch, L. J. Crossey, V. J. Polyak, and Y. Asmerom, 2014, Quaternary extension in the Rio Grande rift at elevated strain rates recorded in travertine deposits, central New Mexico: Lithosphere, 6, 3–16, doi: 10.1130/L278.1.CrossrefWeb of ScienceGoogle Scholar
  • Rougvie, J. R., W. D. Carlson, P. Copeland, and J. N. Connelly, 1999, Late thermal evolution of Proterozoic rocks in the northeastern Llano Uplift, central Texas: Precambrian Research, 94, 49–72, doi: 10.1016/S0301-9268(98)00103-X.PCBRBY0301-9268CrossrefWeb of ScienceGoogle Scholar
  • Ruppel, S. C., 2019a, Anatomy of a Paleozoic Basin: The Permian Basin, USA: AAPG Memoir, 1, 412.CrossrefGoogle Scholar
  • Ruppel, S. C., 2019b, Introduction, overview, and evolution, in S. C. Ruppel, ed., Anatomy of a Paleozoic Basin: The Permian Basin, USA (vol. 1): The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 285; AAPG Memoir 118, 1–27.CrossrefGoogle Scholar
  • Savvaidis, A., A. Lomax, and C. Breton, 2020, Induced seismicity in the Delaware Basin, West Texas, is caused by hydraulic fracturing and wastewater disposal: Bulletin of the Seismological Society of America, 110, 2225–2241, doi: 10.1785/0120200087.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Savvaidis, A., B. Young, G.-C. D. Huang, and A. Lomax, 2019, TexNet: A statewide seismological network in Texas: Seismological Research Letters, 90, 1702–1715, doi: 10.1785/0220180350.SRLEEG0895-0695CrossrefWeb of ScienceGoogle Scholar
  • Schultz, R. A., R. Soliva, H. Fossen, C. H. Okubo, and D. M. Reeves, 2008, Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them: Journal of Structural Geology, 30, 1405–1411, doi: 10.1016/j.jsg.2008.08.001.JSGEDY0191-8141CrossrefWeb of ScienceGoogle Scholar
  • Shumaker, R. C., 1992, Paleozoic structure of the Central Basin uplift and adjacent Delaware Basin, west Texas: AAPG Bulletin, 76, 1804–1824, doi: 10.1306/BDFF8AD8-1718-11D7-8645000102C1865D.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Silver, B. A., and R. G. Todd, 1969, Permian cyclic strata, northern Midland and Delaware Basins, west Texas and southeastern New Mexico: AAPG Bulletin, 53, 2223–2251, doi: 10.1306/5D25C94D-16C1-11D7-8645000102C1865D.AABUD20149-1423CrossrefGoogle Scholar
  • Skoumal, R. J., A. J. Barbour, M. R. Brudzinski, T. Langenkamp, and J. O. Kaven, 2020, Induced seismicity in the Delaware Basin, Texas: Journal of Geophysical Research: Solid Earth, 125, e2019JB018558, doi: 10.1029/2019JB018558.CrossrefWeb of ScienceGoogle Scholar
  • Smye, K., D. A. Banerji, R. Eastwood, G. McDaid, and P. Hennings, 2021a, Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity: Journal of Sedimentary Research, 91, 1113–1132, doi: 10.2110/jsr.2020.134.JSERFV1527-1404CrossrefWeb of ScienceGoogle Scholar
  • Smye, K. M., P. H. Hennings, and E. A. Horne, 2021b, Variations in vertical stress in the Permian Basin region: AAPG Bulletin, 105, 1893–1907, doi: 10.1306/10092019189.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Smye, K. M., C. R. Lemons, R. Eastwood, G. McDaid, and P. H. Hennings, 2019, Stratigraphic architecture and petrophysical characterization of formations for deep disposal in the Fort Worth Basin, Texas: Interpretation, 7, no. 4, SL1–SL17, doi: 10.1190/INT-2018-0195.1.AbstractGoogle Scholar
  • Staniewicz, S., J. Chen, H. Lee, J. Olson, A. Savvaidis, R. Reedy, C. Breton, E. Rathje, and P. Hennings, 2020, InSAR reveals complex surface deformation patterns over an 80,000 km2 oil-producing region in the Permian Basin: Geophysical Research Letters, 47, e2020GL090151, doi: 10.1029/2020GL090151.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Tai, P.-C., and S. L. Dorobek, 2000, Tectonic model for late Paleozoic deformation of the Central Basin platform, Permian Basin region, west Texas, in W. D. DeMisM. K. NelisR. C. Trentham, eds., The Permian Basin: Proving ground for tomorrow’s technologies: West Texas Geological Society, 157–176.Google Scholar
  • TexNet, 2021, Texas seismological network earthquake catalog, available at https://www.beg.utexas.edu/texnet-cisr/texnet/earthquake-catalog, accessed 14 September 2021.Google Scholar
  • TexNet Earthquake Catalog, 2022, https://www.beg.utexas.edu/texnet-cisr/texnet/earthquake-catalog, accessed August 2022.Google Scholar
  • Tung, S., G. Zhai, and M. Shirzaei, 2020, Potential link between 2020 Mentone, West Texas M5 earthquake and nearby wastewater injection: Implications for aquifer mechanical properties: Geophysical Research Letters, 48, e2020GL090551, doi: 10.1029/2020GL090551.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Walper, J. L., 1977, Paleozoic tectonics of the southern margin of North America: Transactions of the Gulf Coast Association of Geological Societies, 27, 230–241.Google Scholar
  • Walper, J. L., 1982, Plate tectonic evolution of the Fort Worth Basin, in C. A. Martin, ed., Petroleum geology of the Fort Worth Basin and bend arch area: Dallas Geological Society, 237–253.Google Scholar
  • Wuellner, D. E., L. R. Lehtonen, and W. C. James, 1986, Sedimentary-tectonic development of the Marathon and Val Verde Basins, west Texas, USA: Permo-Carboniferous migrating foredeep, in P. A. AllenP. Homewood, eds., Foreland Basins: Blackwell Publishing Ltd., 347–368.CrossrefGoogle Scholar
  • Yang, K.-M., and S. L. Dorobek, 1995, The Permian Basin of west Texas and New Mexico: Tectonic history of a “composite” foreland basin and its effects on stratigraphic development, in S. L. DorobekG. M. Ross, eds., Stratigraphic evolution of Foreland Basins: SEPM Special Publication No. 52, 149–174.CrossrefGoogle Scholar
  • Zoback, M. D., and S. M. Gorelick, 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide: Proceedings of the National Academy of Sciences, 109, 10164–10168, doi: 10.1073/pnas.1202473109.CrossrefWeb of ScienceGoogle Scholar
  • Zoback, M. L., and M. Zoback, 1980, State of stress in the conterminous United States: Journal of Geophysical Research: Solid Earth, 85, 6113–6156, doi: 10.1029/JB085iB11p06113.CrossrefWeb of ScienceGoogle Scholar
  • Zoback, M. L., and M. D. Zoback, 1989, Tectonic stress field of the continental United States, in L. C. PakiserW. D. Mooney, eds., Geophysical framework of the continental United States: Geological Society of America Memoir, 523–540.CrossrefGoogle Scholar