This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Geologic and geochemical characteristics of the Cambrian marine shale in the Tarim Basin of China and their implication for the prediction of shale-gas resources

Authors:

Although the Cambrian marine shale in the Tarim Basin is usually considered to be the source rocks for overlying conventional reservoirs, its unconventional shale-gas potential has not yet been evaluated. To indicate the unconventional resource play potential and highlight more favorable zones, we conducted a comprehensive lithologic, petrophysical, and geochemical analysis of 228 drill core samples from 14 wells and 167 outcrop samples from eight geologic sections in the basin. The results indicate that the Cambrian marine shale was deposited in basinal and slope environments dominated by shale and siliceous shale. The average total organic carbon (TOC) content of the Є1xd (Xidashan) and Є2m (Moheershan) Formations ranges from 0.5% to 2.5%, and that of the Є1y (Yuertusi) Formation ranges from 1.0% to 7.0%. Phytoplankton is dominant in the Є1xd and Є2m Formations, whereas benthic algae are more prevalent in the Є1y Formation. The organic matter ranges in maturity from high to postmature. The shale consists of abundant meso- and macropores. The mineral matter is mostly composed of quartz (>50% in most samples) followed by carbonate minerals, with minor contributions made by clay minerals (<20%). The analysis of methane adsorption isotherm indicates a positive correlation between the gas and TOC content and a negative correlation between the gas content and burial depth implying the good adsorption capacity of the shale-gas play. Resource estimation of the Middle-Lower Cambrian indicates that the Yuli and Ruoqiang areas contain a potential 17,813.47×108  m3 of shale gas, and they are the most favorable zones for further exploitation.

References

  • Borkloe, J. K., R. Pan, J. Jin, E. K. Nyantakyi, and J. Meng, 2016, Evaluation of shale gas potential of Cambrian Jiulaodong Formation in Wei-201 well block in Sichuan Basin, China: Interpretation, 4, no. 2, T123–T140, doi: 10.1190/INT-2015-0074.1.
  • Bruns, B., R. Littke, M. Gasparik, J. D. Wees, and S. Nelskamp, 2016, Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW Germany and the Netherlands: A 3D basin modelling study: Basin Research, 28, 2–33, doi: 10.1111/bre.12096.
  • Cai, C. F., K. K. Li, A. L. Ma, C. M. Zhang, Z. M. Xu, R. H. Worden, G. H. Wu, B. S. Zhang, and L. X. Chen, 2009, Distinguishing Cambrian from upper Ordovician source rocks: Evidence from sulfur isotopes and biomarkers in the Tarim Basin: Organic Geochemistry, 40, 755–768, doi: 10.1016/j.orggeochem.2009.04.008.ORGEDE0146-6380
  • Chalmers, G. R., and R. M. Bustin, 2008, Lower cretaceous gas shales in northeastern British Columbia — Part 1: Geological controls on methane sorption capacity: Bulletin Canada Petroleum Geology, 56, 1–21, doi: 10.2113/gscpgbull.56.1.1.
  • Chen, L., Z. X. Jiang, K. Y. Liu, P. F. Wang, Y. Liu, H. Bi, F. L. Gao, C. Zhang, and W. M. Ji, 2017, Relationship between pore characteristics and occurrence state of shale gas: A case study of lower Silurian Longmaxi shale in the Upper Yangtze Platform, South China: Interpretation, 5, no. 3, T437–T449, doi: 10.1190/INT-2016-0191.1.
  • Chen, Q. L., C. L. Chu, X. Yang, G. Hu, Z. Shi, H. J. Jiang, B. J. Shen, and W. H. Liu, 2015a, Sedimentary model and development of the Cambrian source rocks in the Tarim Basin, NW China (in Chinese with English abstract): Petroleum Geology and Experiment, 37, 689–695, doi: 10.7603/s40972-015-0020-8.
  • Chen, Q. L., X. Yang, C. L. Chu, G. Hu, Z. Shi, H. J. Jiang, and W. H. Liu, 2015b, Recognition of depositional environment of Cambrian source rocks in Tarim Basin (in Chinese with English abstract): Oil and Gas Geology, 36, 880–887.
  • Chen, Y. Q., W. Yan, C. W. Han, P. F. Yang, and Z. Li, 2015c, Redefinition on structural paleogeography and lithofacies paleogeography framework from Cambrian to Early Ordovician in the Tarim Basin: A new approach based on seismic stratigraphy evidence (in Chinese with English abstract): Natural Gas Geoscience, 26, 1831–1843.
  • Crosdale, P. J., B. B. Beamish, and M. Valix, 1998, Coalbed methane sorption related to coal composition: International Journal of Coal Geology, 35, 147–158, doi: 10.1016/S0166-5162(97)00015-3.IJCGDE0166-5162
  • Cui, H. F., L. Tian, N. C. Zhang, J. Liu, and J. J. Zhang, 2016, Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest Depression of Tarim Basin (in Chinese with English abstract): Nature Gas Geosciences, 27, 577–583.
  • Gao, H. H., D. F. He, X. G. Tong, Z. X. Wen, and Z. M. Wang, 2017, Tectonic-depositional environment and proto-type basin evolution of the Cambrian in the Tarim Basin (in Chinese with English abstract): Geoscience, 31, 102–118.
  • Gao, X. Y., L. F. Liu, F. J. Jiang, Y. Wang, F. Xiao, and Z. Y. Ren, 2015, Analysis of geological effects on methane adsorption capacity of continental shale: A case study of the Jurassic shale in the Tarim Basin, Northwestern China: Geological Journal, 51, 936–948, doi: 10.1002/gj.v51.6.GELJA80072-1050
  • Gao, Z. Y., S. C. Zhang, X. Y. Zhang, and R. K. Zhu, 2007, Relations between spatial distribution and sequence types of the Cambrian-Ordovician marine source rocks in Tarim Basin: Chinese Science Bulletin, 52, 92–102, doi: 10.1007/s11434-007-6023-7.CSBUEF1001-6538
  • Gu, Y., W. L. Ding, M. Yin, R. Y. Wang, B. C. Jiao, G. Zhao, and L. Lu, 2018, Investigation of the methane adsorption characteristics of marine organic-rich shale: A case study of the lower Cambrian Niutitang shale in the Fenggang block, Northern Guizhou Province, South China: Interpretation, 6, no. 4, T819–T833, doi: 10.1190/INT-2017-0238.1.
  • Hartkopf-Fröder, C., P. Königshof, R. Littke, and J. Schwarzbauer, 2015, Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review: International Journal of Coal Geology, 150–151, 74–119, doi: 10.1016/j.coal.2015.06.005.IJCGDE0166-5162
  • Hu, G., W. H. Liu, Q. L. Tengger, X. M. Chen, J. Xie, L. F. Wang, Lu, and B. J. Shen, 2014a, Tectonic-sedimentary constrains for hydrocarbon generating organism assemblage in the lower Cambrian argillaceous source rocks, Tarim Basin (in Chinese with English abstract): Oil and Gas Geology, 35, 685–695.
  • Hu, M. Y., Q. J. Deng, and Z. G. Hu, 2014b, Shale gas accumulation conditions of the Lower Cambrian Niutitang Formation in Upper Yangtze region (in Chinese with English abstract): Oil and Gas Geology, 35, 272–279.
  • Ji, L., T. Zhang, K. L. Milliken, J. Qu, and X. Zhang, 2012, Experimental investigation of main controls to methane adsorption in clay-rich rocks: Applied Geochemistry, 27, 2533–2545, doi: 10.1016/j.apgeochem.2012.08.027.
  • Jiang, S., J. C. Zhang, Z. Q. Jiang, Z. Y. Xu, D. S. Cai, L. Chen, Y. Wu, D. S. Zhou, Z. L. Jiang, X. B. Zhao, and S. J. Bao, 2015, Geology, resource potentials, and properties of emerging and potential China shale gas and shale oil plays: Interpretation, 3, no. 2, SJ1–SJ13, doi: 10.1190/INT-2014-0142.1.
  • Jin, Z. J., Q. Y. Liu, J. B. Yun, and Tenger, 2017, Potential petroleum sources and exploration directions around the Manjar Sag in the Tarim Basin: Science China: Earth Sciences, 60, 235–245, doi: 10.1007/s11430-015-5573-7.
  • Kiørboe, T., and G. A. Jackson, 2001, Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria: Limnology and Oceanography, 46, 1309–1318, doi: 10.4319/lo.2001.46.6.1309.LIOCAH0024-3590
  • Lin, W. U., S. W. Guan, R. Ren, X. B. Wang, H. J. Yang, J. Q. Jin, and G. Y. Zhu, 2016, The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, Western China: Petroleum Exploration and Development, 43, 506–513, doi: 10.1016/S1876-3804(16)30059-3.
  • Littke, R., U. Klussmann, B. Krooss, and D. Leythaeuser, 1991, Quantification of loss of calcite, pyrite and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics: Geochimica Et Cosmochimica Acta, 55, 3369–3378, doi: 10.1016/0016-7037(91)90494-P.GCACAK0016-7037
  • Liu, L. F., J. Q. Qiao, B. J. Shen, X. Y. Lu, and Y. S. Yang, 2017, Geological characteristics and shale gas distribution of carboniferous mudstones in the Tarim Basin, China: Acta Geochimica, 36, 260–275, doi: 10.1007/s11631-017-0144-8.
  • Loucks, R. G., and S. C. Ruppel, 2007, Mississippian Barnett shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas: AAPG Bulletin, 91, 579–601, doi: 10.1306/11020606059.AABUD20149-1423
  • Mclennan, J. A., P. F. Allwardt, P. H. Hennings, and H. E. Farrell, 2009, Multivariate fracture intensity prediction: Application to Oil Mountain Anticline, Wyoming: AAPG Bulletin, 93, 1585–1595, doi: 10.1306/07220909081.AABUD20149-1423
  • Nelson, R. A., 1985, Geologic analysis of naturally fractured reservoirs: Contributions in petroleum geology and engineering: Gulf Publishing Company.
  • Pang, X. Q., J. Q. Chen, S. M. Li, J. F. Chen, Y. X. Wang, and H. Pang, 2016, Evaluation method and application of the relative contribution of marine hydrocarbon source rocks in the Tarim Basin: A case study from the Tazhong area: Marine and Petroleum Geology, 77, 1–18, doi: 10.1016/j.marpetgeo.2016.05.023.MPEGD80264-8172
  • Qiao, J. Q., L. F. Liu, F. L. An, F. Xiao, Y. Wang, K. J. Wu, and Y. Y. Zhao, 2016, Hydrocarbon potential evaluation of the source rocks from the Abu Gabra Formation in the Sufyan Sag, Muglad Basin, Sudan: Journal of African Earth Sciences, 118, 301–312, doi: 10.1016/j.jafrearsci.2015.12.024.JAESD8
  • Qin, J. Z., G. L. Tao, L. Z. Tenger, X. M. Bian, Xie, and X. D. Fu, 2010, Hydrocarbon-forming organisms in excellent marine source rocks in South China (in Chinese with English abstract): Petroleum Geology and Experiment, 32, 262–269.
  • Ross, D. J. K., and R. M. Bustin, 2007, Shale gas potential of the lower Jurassic Gordondale Member, Northeastern British Columbia, Canada: Bulletin of Canadian Petroleum Geology, 55, 51–75, doi: 10.2113/gscpgbull.55.1.51.BCPGAI0007-4802
  • Ross, D. J. K., and R. M. Bustin, 2008, Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation: AAPG Bulletin, 92, 87–125, doi: 10.1306/09040707048.AABUD20149-1423
  • Ross, D. J. K., and R. M. Bustin, 2009, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs: Marine Petroleum Geology, 26, 916–927, doi: 10.1016/j.marpetgeo.2008.06.004.
  • Sikander, A. H., and J. L. Pittion, 1978, Reflectance studies on organic matter in lower Paleozoic sediments of Quebec: Bulletin of Canadian Petroleum Geology, 26, 132–151.BCPGAI0007-4802
  • Tang, X. L., Z. X. Jiang, Z. Li, L. J. Cheng, Y. Zhang, P. K. Sun, and C. Y. Fan, 2017, Factors controlling organic matter enrichment in the lower Cambrian Niutitang formation Shale on the eastern shelf margin of the Yangtze Block, China: Interpretation, 5, no. 3, T399–T410, doi: 10.1190/INT-2017-0008.1.
  • Wang, F. Y., J. Y. Chen, G. Gao, Y. G. Sun, and P. A. Peng, 2010, Reflectance of macroalgae-derived vitrinite-like macerals: An organic maturity indicator for pre-Devonian marine strata (in Chinese with English abstract): Petroleum Exploration and Development, 37, 250–256.
  • Xiao, Z. H, J. S. Liu, J. Q. Tan, R. F. Yang, J. Hilton, P. Zhou, Z. H. Wang, and Y. Cao, 2018, Geologic characterization of a Lower Cambrian marine shale: Implications for shale gas potential in Northwestern Hunan, South China: Interpretation, 6, no. 3, T635–T647, doi: 10.1190/INT-2017-0117.1.
  • Xiong, R., J. G. Zhou, X. F. Ni, Y. J. Zhu, and Y. Q. Chen, 2015, Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim Basin: Annals of the Rheumatic Diseases, 35, 49–56.ARDIAO0003-4967
  • Yang, W., G. Q. Wei, Q. H. Wang, and Z. Y. Xiao, 2004, Two types of Cambrian source rocks and related petroleum systems in Tarim basin (in Chinese with English abstract): Oil and Gas Geology, 25, 263–267.
  • Yu, B. S., and T. L. Fan, 2008, Sedimentary-tectonic control on the development of muddy hydrocarbon source rocks of Cambrian-Ordovician from Tarim Basin (in Chinese with English abstract): Geoscience, 22, 534–540.
  • Yu, B. S., R. Zhuang, Z. Cong, Y. L. Pan, C. S. Lin, and L. D. Wang, 2016, Tectonic evolution of Tarim basin in Cambrian-Ordovician and its implication for reservoir development, NW China: Journal of Earth System Science, 125, 285–300, doi: 10.1007/s12040-016-0665-2.
  • Zhang, B. M., S. C. Zhang, L. Z. Bian, Z. J. Jin, and D. R. Wang, 2007, Developmental modes of the Neoproterozoic-lower Paleozoic marine hydrocarbon source rocks in China: Chinese Science Bulletin, 52, 77–91, doi: 10.1007/s11434-007-6018-4.CSBUEF1001-6538
  • Zhang, C., D. M. Zheng, and J. H. Li, 2001, Attribute of Paleozoic structures and its evolution characteristics in Keping fault-uplift (in Chinese with English abstract): Oil and Gas Geology, 22, 314–318.
  • Zhang, J. C., L. M. Lin, Y. X. Li, S. L. Jiang, J. X. Liu, W. L. Jiang, X. Tang, and S. B. Han, 2012a, The method of shale gas assessment: Probability volume method: Earth Science Frontiers, 19, 184–191.
  • Zhang, S. C., Z. Y. Gao, J. J. Li, B. M. Zhang, Q. Y. Gu, and Y. H. Lu, 2012b, Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin: Petroleum Exploration and Development, 39, 305–314, doi: 10.1016/S1876-3804(12)60046-9.
  • Zhang, S. C., H. P. Huang, J. Su, M. Liu, X. M. Wang, and J. Hu, 2015, Geochemistry of Paleozoic marine petroleum from the Tarim Basin, NW China — Part 5: Effect of maturation, TSR and mixing on the occurrence and distribution of alkyldibenzothiophenes: Organic Geochemistry, 86, 5–18, doi: 10.1016/j.orggeochem.2015.05.008.ORGEDE0146-6380
  • Zhang, S. C., B. M. Zhang, B. L. Li, G. Y. Zhu, J. Su, and X. M. Wang, 2011, History of hydrocarbon accumulations spanning important tectonic phases in marine sedimentary basins of China: Taking the Tarim Basin as an example: Petroleum Exploration and Development, 38, 1–15, doi: 10.1016/S1876-3804(11)60010-4.
  • Zhang, T. W., G. S. Ellis, S. C. Ruppel, K. Milliken, and R. S. Yang, 2012c, Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems: Organic Geochemistry, 47, 120–131, doi: 10.1016/j.orggeochem.2012.03.012.ORGEDE0146-6380
  • Zhu, C. L, Y. Hua, Y. Lu, H. Qiang, and H. M. Ma, 2014, Characteristics of Cambrian source rocks in well xh1, Shaya Uplift, Tarim Basin (in Chinese with English abstract): Petroleum Geology and Experiment, 36, 626–632.
  • Zhu, G. Y., F. R. Chen, Z. Y. Chen, Y. Zhang, X. Xing, X. W. Tao, and D. B. Ma, 2016, Discovery and basic characteristics of high-quality source rocks found in the Yuertusi Formation of the Cambrian in Tarim Basin, China: Journal of Natural Gas Geoscience, 1, 21–33, doi: 10.1016/j.jnggs.2016.05.002.
  • Zhu, G. Y., S. C. Zhang, J. Su, H. P. Huang, H. J. Yang, L. J. Gu, B. Zhang, and Y. F. Zhu, 2012, The occurrence of ultra-deep heavy oils in the Tabei Uplift of the Tarim Basin, NW China: Organic Geochemistry, 52, 88–102, doi: 10.1016/j.orggeochem.2012.08.012.ORGEDE0146-6380