This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Modeling and inversion of magnetic and VLF-EM data with an application to basement fractures: A case study from Raigarh, India

We present modeling of magnetic and very low frequency electromagnetic (VLF-EM) data to map the spatial distribution of basement fractures where uranium is reported in Sambalpur granitoids in the Raigarh district, Chhattisgarh, India. Radioactivity in the basement fractures is attributed to brannerite, U-Ti-Fe complex, and uranium adsorbed on ferruginous matter. The amplitude of the 3D analytical signal of the observed magnetic data indicates the trend of fracture zones. Further, the application of Euler 3D deconvolution to magnetic data provides the spatial locations and depth of the source. Fraser-filtered VLF-EM data and current density pseudosections indicate the presence of shallow and deep conductive zones along the fractures. Modeling of VLF-EM data yields the subsurface resistivity distribution of the order of less than 100 ohm-m of the fractures. The interpreted results of both magnetic and VLF-EM data agree well with the geologic section obtained from drilling.

REFERENCES

  • ABEM, 2007, A Nitro Consultant Company, International frequency list, ABEM printed matter no. 93062: www.abem.se/products/wadi/vlf-freq.pdf, accessed June 18, 2007.Google Scholar
  • Baker, H. A. , and J. O. Myers, 1979, VLF-EM model studies and some simple quantitative applications to field results: GeoexplorationGEOXAV0016-7142, 17, 55–63.CrossrefGoogle Scholar
  • Beamish, D., 1994, Two-dimensional, regularized inversion of VLF data: Journal of Applied GeophysicsJAGPEA0926-9851, 32, 357–374.CrossrefWeb of ScienceGoogle Scholar
  • Beamish, D., 2000, Quantitative 2D VLF data interpretation: Journal of Applied GeophysicsJAGPEA0926-9851, 45, 33–47.CrossrefWeb of ScienceGoogle Scholar
  • Benerjee, D. C. , 2005, Development in uranium resources, production, demand and the environment: International Atomic Energy Agency, Technical Document 1426, 81–94.Google Scholar
  • Chakraborti, S., 1997, Elucidation of the sedimentary history of the Singhora group of rocks, Chhattisgarh Super Group, Madhya Pradesh: Research in Geological Survey of India, 130, Plate 6, 184–187.Google Scholar
  • Chouteau, M., P. Zhang, and D. Chapellier, 1996, Computation of apparent resistivity profiles from VLF-EM data using linear filtering: Geophysical ProspectingGPPRAR0016-8025, 44, 215–232.10.1111/j.1365-2478.1996.tb00147.xCrossrefWeb of ScienceGoogle Scholar
  • Clark, D. A. , 1997, Magnetic petrophysics and magnetic petrology: Aids to geological interpretation of magnetic surveys: AGSO Journal of Australian Geology & Geophysics, 17, no. 2, 83–103.Google Scholar
  • Coney, D. P. , 1977, Model studies of the VLF-EM method of geophysical prospecting: GeoexplorationGEOXAV0016-7142, 15, 19–35.CrossrefGoogle Scholar
  • Das, D. P. , V. Kundu, A. N. Das, D. R. Datta, A. Kumaran, S. Ramanamurthy, C. Thangavelu, and V. Rajaiya, 1992, Lithostratigraphy and sedimentation of Chhattisgarh basin: Indian Minerals, 46, no. 3&4, 271–288.Google Scholar
  • Fisher, G., B. V. Le Quang, and I. Muller, 1983, VLF ground surveys, a powerful tool for the study of shallow two-dimensional structures: Geophysical ProspectingGPPRAR0016-8025, 31, 977–991.10.1111/j.1365-2478.1983.tb01100.xCrossrefWeb of ScienceGoogle Scholar
  • FitzGerald, D., A. Reid, and P. McInerney, 2004, New discrimination techniques for Euler deconvolution: Computers & GeosciencesCGEODT0098-3004, 3, 461–469.CrossrefWeb of ScienceGoogle Scholar
  • Fraser, D. C. , 1969, Contouring of VLF-EM data: GeophysicsGPYSA70016-8033, 34, 958–967.10.1190/1.1440065AbstractWeb of ScienceGoogle Scholar
  • Fraser, D. C. , 1981, A review of some useful algorithms in geophysics Canadian Institute of Mining: Metallurgy and Petroleum Transactions, 74, no. 828, 76–83.Google Scholar
  • Grant, F. S. , 1985, Aeromagnetics, geology and ore environments, I. Magnetite in igneous, sedimentary and metamorphic rocks: An overview: GeoexplorationGEOXAV0016-7142, 24, 2141–2159.Google Scholar
  • Hayles, J. G. , and A. K. Sinha, 1986, A portable local loop VLF transmitter for geological fracture mapping: Geophysical ProspectingGPPRAR0016-8025, 34, 873–896.CrossrefWeb of ScienceGoogle Scholar
  • Hsu, S.-K., J. C. Sibuet, and C. T. Shyu, 1996, High-resolution detection of geological boundaries from potential-field anomalies — An enhanced analytic signal technique: GeophysicsGPYSA70016-8033, 61, 373–386.10.1190/1.1443966AbstractWeb of ScienceGoogle Scholar
  • Hutchinson, P. J. , and L. S. Barta, 2002, VLF surveying to delineate long wallmine induced fractures: The Leading EdgeLEEDFF1070-485X, 21, 491–493.AbstractGoogle Scholar
  • Kaikkonen, P., 1979, Numerical VLF modeling: Geophysical ProspectingGPPRAR0016-8025, 27, 815–834.10.1111/j.1365-2478.1979.tb01000.xCrossrefWeb of ScienceGoogle Scholar
  • Kaikkonen, P., and S. P. Sharma, 1998, 2D nonlinear joint inversion of VLF and VLF-R data using simulated annealing: Journal of Applied GeophysicsJAGPEA0926-9851, 39, 155–176.CrossrefWeb of ScienceGoogle Scholar
  • Kaikkonen, P., and S. P. Sharma, 2001, A comparison of performances of linearized and global nonlinear 2D inversions of VLF and VLF-R electromagnetic data: GeophysicsGPYSA70016-8033, 66, 462–475.10.1190/1.1444937AbstractWeb of ScienceGoogle Scholar
  • Kamalesh, K., and A. R. Mukundan, 1998, Proterozoic Basin Investigation Group: unpublished report of AMD/DAE, C.R., Nagpur, India.Google Scholar
  • Karous, M., and S. E. Hjelt, 1983, Linear filtering of VLF dip-angle measurements: Geophysical ProspectingGPPRAR0016-8025, 31, 782–794.10.1111/j.1365-2478.1983.tb01085.xCrossrefWeb of ScienceGoogle Scholar
  • MacLeod, I. N. , K. Jones, and F. D. Ting, 1993, 3-D Analytic signal in the interpretation of total magnetic field data at low magnetic latitudes: Exploration GeophysicsEXGEEF0812-3985, 24, 679–688.Google Scholar
  • McNeill, J. D. , and V. Labson, 1991, Geological mapping using VLF Radio fields, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics — Part B, Applications: SEG, 521–640.AbstractGoogle Scholar-
  • Monteiro, S. F. A. , A. Mateus, J. Figueiras, and M. A. Gonçalves, 2006, Mapping groundwater contamination around a landfill facility using the VLF-EM method — A case study: Journal of Applied GeophysicsJAGPEA0926-9851, 60, 115–125.CrossrefWeb of ScienceGoogle Scholar
  • Nabighian, M. N. , 1972, The analytical signal of two-dimensional magnetic bodies with polygonal cross section: Its properties and use for automated anomaly interpretation: GeophysicsGPYSA70016-8033, 37, 507–517.10.1190/1.1440276AbstractWeb of ScienceGoogle Scholar
  • Ogilvy, R. D. , and A. C. Lee, 1991, Interpretation of VLF-EM in-phase data using current density pseudosections: Geophysical ProspectingGPPRAR0016-8025, 39, 567–580.10.1111/j.1365-2478.1991.tb00328.xCrossrefWeb of ScienceGoogle Scholar
  • Paal, G., 1965, Ore prospecting based on VLF radio signals: GeoexplorationGEOXAV0016-7142, 3, 139–147.10.1016/0016-7142(65)90016-5CrossrefGoogle Scholar
  • Parker, M. E. , 1980, VLF electromagnetic mapping for stratabound mineralization near Aberfeldy: Transactions of the Institute of Mining and Metallurgy, Section B, 89, B123–B133.Google Scholar
  • Paterson, N. R. , and C. V. Reeves, 1985, Application of gravity and magnetic surveys: The state-of-art in 1985: GeophysicsGPYSA70016-8033, 50, 2558–2594.10.1190/1.1441884AbstractWeb of ScienceGoogle Scholar
  • Paterson, N. R. , and V. Ronka, 1971, Five years of surveying with the very low frequency electromagnetic method: GeoexplorationGEOXAV0016-7142, 9, 7–26.CrossrefGoogle Scholar
  • Philips, W. J. , and W. E. Richards, 1975, A study of the effectiveness of the VLF method for the location of narrow-mineralized fault zones: GeoexplorationGEOXAV0016-7142, 13, P.215–226.CrossrefGoogle Scholar
  • Poddar, M., and B. S. Rathor, 1983, VLF survey of the weathered layer in southern India: Geophysical ProspectingGPPRAR0016-8025, 31, P.524–537.10.1111/j.1365-2478.1983.tb01067.xCrossrefWeb of ScienceGoogle Scholar
  • Rameshbabu, V., Subashram, R. Srinivas, D. VeeraBhaskar, and A. K. Bhattacharya, 2004, VLF-EM surveys for uranium exploration in Dulapali area, Raigarh district, Madhya Pradesh, India: Journal of GeophysicsJGEOD40340-062X, 25, 27–33.Google Scholar
  • Rao, B. N. , P. Ramakrishna, and A. Markandeyulu, 1995, GMINV: A computer program for gravity or magnetic data inversion: Computers & GeosciencesCGEODT0098-3004, 21, 301–319.CrossrefWeb of ScienceGoogle Scholar
  • Reid, A. B., J. M. Allsop, H. Granser, A. J. Millett, and I. W. Somerton, 1990, Magnetic interpretation in three dimensions using Euler deconvolution: GeophysicsGPYSA70016-8033, 55, 80–91.10.1190/1.1442774AbstractWeb of ScienceGoogle Scholar
  • Sasaki, Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data: GeophysicsGPYSA70016-8033, 54, 254–262.10.1190/1.1442649AbstractWeb of ScienceGoogle Scholar
  • Sasaki, Y., 2001, Full 3-D inversion of electromagnetic data on PC: Journal of Applied GeophysicsJAGPEA0926-9851, 46, 45–54.10.1016/S0926-9851(00)00038-0CrossrefWeb of ScienceGoogle Scholar
  • Saydam, A. S. , 1981, Very low frequency electromagnetic interpretation using tilt angle and ellipticity measurements: GeophysicsGPYSA70016-8033, 46, 1594–1606.10.1190/1.1441166AbstractWeb of ScienceGoogle Scholar
  • Sharma, P. V. , 1987, Magnetic methods applied to mineral exploration: Ore Geology Reviews, 2, 323–357.CrossrefGoogle Scholar
  • Shobita, K., 1998, Petrological report no. 97–98/9, unpublished report, Atomic Mineral Directorate for Exploration and Research (AMDER)/Department of Atomic Energy (DAE), C. R., Nagpur, India.Google Scholar
  • Srinivas, Y., 2001, Modified Hilbert transform — A tool to the interpretation of geophysical field anomalies: Ph.D. thesis, Osmania University.Google Scholar
  • Sundararajan, N., 1983, Interpretation techniques in geophysical exploration using Hilbert transform: Ph.D. thesis, Osmania University.Google Scholar
  • Sundararajan, N., M. Narasimhachary, G. Nandakumar, and Y. Srinivas, 2007, VES and VLF an application to ground water exploration, Khammam, India: The Leading EdgeLEEDFF1070-485X, 708–716.AbstractGoogle Scholar
  • Sundararajan, N., V. Rameshbabu, N. S. Prasad, and Y. Srinivas, 2006, VLFPROS–A MATLAB code for processing of VLF-EM data: Computers & GeosciencesCGEODT0098-3004, 32, 1806–1813.CrossrefWeb of ScienceGoogle Scholar
  • Thompson, D. T. , 1982, EULDPH: A new technique for making computer-assisted depth estimates from magnetic data: GeophysicsGPYSA70016-8033, 47, 31–37.10.1190/1.1441278AbstractWeb of ScienceGoogle Scholar
  • Won, I. J. , and M. G. Bevis, 1987, Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines: GeophysicsGPYSA70016-8033, 52, 232–238.10.1190/1.1442298AbstractWeb of ScienceGoogle Scholar
  • Wright, J. L. , 1988, VLF Interpretation manual: Scintrex, Ltd.Google Scholar