This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Abstract

We present an application of 3D frequency-domain full waveform inversion (FWI) on ocean-bottom cable data from the North Sea. Frequency-domain seismic modeling is performed in the visco-acoustic VTI approximation with a sparse direct solver based on the multifrontal method. The computational cost of the multifrontal LU factorization is efficiently reduced with a block-low rank (BLR) approximation of the dense frontal matrices. A multiscale frequency-domain FWI is applied by successive inversions of 11 discrete frequencies in the 3.5Hz-10Hz frequency band. The velocity model built by FWI reveals short-scale features such as channels, scrapes left by drifting icebergs on the paleo-seafloor, fractures and deep reflectors below the reservoir level, although the presence of gas in the overburden. The quality of the FWI results is controlled by time-domain modeling and source wavelet estimation. Next step is the application of multi-parameter FWI with second-order optimization algorithms, which can be efficiently implemented with our frequency-domain modeling engine.