This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Tutorial for wave-equation inversion of skeletonized data

Authors:

Full-waveform inversion of seismic data is often plagued by cycle-skipping problems such that an iterative optimization method often gets stuck in a local minimum. To avoid this problem, we simplify the objective function so that the iterative solution can quickly converge to a solution in the vicinity of the global minimum. The objective function is simplified by only using parsimonious and important portions of the data, which are defined as skeletonized data. We have developed a mostly nonmathematical tutorial that explains the theory of wave-equation inversion of skeletonized data. We also demonstrate its effectiveness with examples.

References

  • Biondi, B., and P. Sava, 1999, Wave-equation migration velocity analysis: 69th Annual International Meeting, SEG, Expanded Abstracts, 1723–1726.AbstractGoogle Scholar
  • Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1.1443880.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • De Meersman, K., 2013, S-waves and the near surface: A time-lapse study of S-wave velocity and attenuation in the weathering layer of an Alberta heavy oil field: The Leading Edge, 32, 40–47, doi: 10.1190/tle32010040.1.AbstractGoogle Scholar
  • Duquet, B., P. Lailly, and A. Ehinger, 2001, 3D plane wave migration of streamer data: 71st Annual International Meeting, SEG, Expanded Abstracts, 1033–1036.AbstractGoogle Scholar
  • Dutta, G., 2016b, Skeletonized wave-equation inversion for Q: 86th Annual International Meeting, SEG, Expanded Abstracts, 3618–3623.AbstractGoogle Scholar
  • Dutta, G., and G. T. Schuster, 2016a, Wave-equation Q tomography: Geophysics, 81, no. 4, R471–R484, doi: 10.1190/geo2016-0081.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Guo, B., and G. T. Schuster, 2017, Wave-equation migration velocity analysis using plane-wave common image gathers: Geophysics, 82, doi: 10.1190/geo2016-0653.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Hanafy, M. S., A. Altheyab, and G. T. Schuster, 2015, Controlled noise seismology: 85th Annual International Meeting, SEG, Expanded Abstracts, 5102–5107.AbstractGoogle Scholar
  • Li, J., G. Dutta, and G. T. Schuster, 2017b, Wave-equation Qs inversion of skeletonized surface waves: Geophysical Journal International, 209, 979–991, doi: 10.1093/gji/ggx051.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Li, J., Z. Feng, and G. T. Schuster, 2017a, Wave-equation dispersion inversion: Geophysical Journal International, 208, 1567–1578, doi: 10.1093/gji/ggw465.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Li, J., and M. S. Hanafy, 2016, Skeletonized inversion of surface wave: Active source versus controlled noise comparison: Interpretation, 4, no. 3, SH11–SH19, doi: 10.1190/INT-2015-0174.1.AbstractGoogle Scholar
  • Li, J., and G. T. Schuster, 2016, Skeletonized wave equation of surface wave dispersion inversion: 86th Annual International Meeting, SEG, Expanded Abstracts, 3630–3635.AbstractGoogle Scholar
  • Liu, F., D. W. Hanson, N. D. Whitmore, R. S. Day, and R. H. Stolt, 2006, Toward a unified analysis for source plane-wave migration: Geophysics, 71, no. 4, S129–S139, doi: 10.1190/1.2213933.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Luo, Y., and G. T. Schuster, 1991a, Wave equation inversion of skeletonized geophysical data: Geophysical Journal International, 105, 289–294, doi: 10.1111/j.1365-246X.1991.tb06713.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Luo, Y., and G. T. Schuster, 1991b, Wave equation traveltime inversion: Geophysics, 56, 645–653, doi: 10.1190/1.1443081.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sava, P., and B. Biondi, 2004, Wave-equation migration velocity analysis — Part 1: Theory: Geophysical Prospecting, 52, 593–606, doi: 10.1111/j.1365-2478.2004.00447.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Schuster, G. T., 2017, Seismic inversion: SEG.AbstractGoogle Scholar
  • Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, no. 5, VE49–VE59, doi: 10.1190/1.2972021.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.CrossrefGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Whitmore, N. D., 1995, An imaging hierarchy for common-angle plane wave seismograms: Ph.D. thesis, University of Tulsa.Google Scholar
  • Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, 15–26, doi: 10.1190/1.1443179.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhang, L., D. Zhu, and X. Zhang, 2015, Seismic attributes method for prediction of unconsolidated sand reservoirs of heavy oil: The Open Fuels & Energy Science Journal, 8, 1–13, doi: 10.2174/1876973X01508010001.CrossrefGoogle Scholar
  • Zhang, Y., J. Sun, C. Notfors, S. H. Gray, L. Chernis, and J. Young, 2005, Delayed-shot 3D depth migration: Geophysics, 70, no. 5, E21–E28, doi: 10.1190/1.2057980.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhang, Z. D., G. T. Schuster, Y. Liu, S. M. Hanafy, and J. Li, 2016, Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient: Journal of Applied Geophysics, 133, 9–15, doi: 10.1016/j.jappgeo.2016.07.019.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Zhou, C., W. Cai, Y. Luo, G. T. Schuster, and S. Hassanzadeh, 1995, Acoustic wave equation traveltime and waveform inversion of crosshole seismic data: Geophysics, 60, 765–773, doi: 10.1190/1.1443815.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhu, T., and J. M. Harris, 2015, Improved estimation of P-wave velocity, S-wave velocity, and attenuation factor by iterative structural joint inversion of crosswell seismic data: Journal of Applied Geophysics, 123, 71–80, doi: 10.1016/j.jappgeo.2015.09.005.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar