This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Tutorial for wave-equation inversion of skeletonized data

Authors:

Full-waveform inversion of seismic data is often plagued by cycle-skipping problems such that an iterative optimization method often gets stuck in a local minimum. To avoid this problem, we simplify the objective function so that the iterative solution can quickly converge to a solution in the vicinity of the global minimum. The objective function is simplified by only using parsimonious and important portions of the data, which are defined as skeletonized data. We have developed a mostly nonmathematical tutorial that explains the theory of wave-equation inversion of skeletonized data. We also demonstrate its effectiveness with examples.

References

  • Biondi, B., and P. Sava, 1999, Wave-equation migration velocity analysis: 69th Annual International Meeting, SEG, Expanded Abstracts, 1723–1726.
  • Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1.1443880.GPYSA70016-8033
  • De Meersman, K., 2013, S-waves and the near surface: A time-lapse study of S-wave velocity and attenuation in the weathering layer of an Alberta heavy oil field: The Leading Edge, 32, 40–47, doi: 10.1190/tle32010040.1.
  • Duquet, B., P. Lailly, and A. Ehinger, 2001, 3D plane wave migration of streamer data: 71st Annual International Meeting, SEG, Expanded Abstracts, 1033–1036.
  • Dutta, G., 2016b, Skeletonized wave-equation inversion for Q: 86th Annual International Meeting, SEG, Expanded Abstracts, 3618–3623.
  • Dutta, G., and G. T. Schuster, 2016a, Wave-equation Q tomography: Geophysics, 81, no. 4, R471–R484, doi: 10.1190/geo2016-0081.1.GPYSA70016-8033
  • Guo, B., and G. T. Schuster, 2017, Wave-equation migration velocity analysis using plane-wave common image gathers: Geophysics, 82, doi: 10.1190/geo2016-0653.1.GPYSA70016-8033
  • Hanafy, M. S., A. Altheyab, and G. T. Schuster, 2015, Controlled noise seismology: 85th Annual International Meeting, SEG, Expanded Abstracts, 5102–5107.
  • Li, J., G. Dutta, and G. T. Schuster, 2017b, Wave-equation Qs inversion of skeletonized surface waves: Geophysical Journal International, 209, 979–991, doi: 10.1093/gji/ggx051.GJINEA0956-540X
  • Li, J., Z. Feng, and G. T. Schuster, 2017a, Wave-equation dispersion inversion: Geophysical Journal International, 208, 1567–1578, doi: 10.1093/gji/ggw465.GJINEA0956-540X
  • Li, J., and M. S. Hanafy, 2016, Skeletonized inversion of surface wave: Active source versus controlled noise comparison: Interpretation, 4, no. 3, SH11–SH19, doi: 10.1190/INT-2015-0174.1.
  • Li, J., and G. T. Schuster, 2016, Skeletonized wave equation of surface wave dispersion inversion: 86th Annual International Meeting, SEG, Expanded Abstracts, 3630–3635.
  • Liu, F., D. W. Hanson, N. D. Whitmore, R. S. Day, and R. H. Stolt, 2006, Toward a unified analysis for source plane-wave migration: Geophysics, 71, no. 4, S129–S139, doi: 10.1190/1.2213933.GPYSA70016-8033
  • Luo, Y., and G. T. Schuster, 1991a, Wave equation inversion of skeletonized geophysical data: Geophysical Journal International, 105, 289–294, doi: 10.1111/j.1365-246X.1991.tb06713.x.GJINEA0956-540X
  • Luo, Y., and G. T. Schuster, 1991b, Wave equation traveltime inversion: Geophysics, 56, 645–653, doi: 10.1190/1.1443081.GPYSA70016-8033
  • Sava, P., and B. Biondi, 2004, Wave-equation migration velocity analysis — Part 1: Theory: Geophysical Prospecting, 52, 593–606, doi: 10.1111/j.1365-2478.2004.00447.x.GPPRAR0016-8025
  • Schuster, G. T., 2017, Seismic inversion: SEG.
  • Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, no. 5, VE49–VE59, doi: 10.1190/1.2972021.GPYSA70016-8033
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033
  • Whitmore, N. D., 1995, An imaging hierarchy for common-angle plane wave seismograms: Ph.D. thesis, University of Tulsa.
  • Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, 15–26, doi: 10.1190/1.1443179.GPYSA70016-8033
  • Zhang, L., D. Zhu, and X. Zhang, 2015, Seismic attributes method for prediction of unconsolidated sand reservoirs of heavy oil: The Open Fuels & Energy Science Journal, 8, 1–13, doi: 10.2174/1876973X01508010001.
  • Zhang, Y., J. Sun, C. Notfors, S. H. Gray, L. Chernis, and J. Young, 2005, Delayed-shot 3D depth migration: Geophysics, 70, no. 5, E21–E28, doi: 10.1190/1.2057980.GPYSA70016-8033
  • Zhang, Z. D., G. T. Schuster, Y. Liu, S. M. Hanafy, and J. Li, 2016, Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient: Journal of Applied Geophysics, 133, 9–15, doi: 10.1016/j.jappgeo.2016.07.019.JAGPEA0926-9851
  • Zhou, C., W. Cai, Y. Luo, G. T. Schuster, and S. Hassanzadeh, 1995, Acoustic wave equation traveltime and waveform inversion of crosshole seismic data: Geophysics, 60, 765–773, doi: 10.1190/1.1443815.GPYSA70016-8033
  • Zhu, T., and J. M. Harris, 2015, Improved estimation of P-wave velocity, S-wave velocity, and attenuation factor by iterative structural joint inversion of crosswell seismic data: Journal of Applied Geophysics, 123, 71–80, doi: 10.1016/j.jappgeo.2015.09.005.JAGPEA0926-9851