This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Stable neural network-based traveltime tomography using hard-constrained measurements

Authors:

Traveltime tomography, or traveltime inversion, has been one of the primary seismological tools for decades and has been used to understand the earth’s properties and dynamic processes. An accurate, preferably flexible, eikonal solver to compute the traveltime field is at the heart of the inversion process. However, most conventional eikonal solvers suffer from first-order convergence errors and difficulties dealing with irregular computational grids. Physics-informed neural networks (PINNs) have been introduced to tackle these problems and have successfully addressed these challenges. Nevertheless, these approaches still suffer from slow convergence and unstable training dynamics due to the multiterm nature of the loss function. To improve this, we develop a new formulation for the isotropic eikonal equation, which imposes boundary conditions as hard constraints. We apply the theory of functional connections to the traveltime tomography problem, which allows for using a single loss term to train the PINN model. We also analyze the effect of different traveltime factorizations on the overall inversion performance. The additive factorization yields a better result than the previously used multiplicative factorization. Our framework’s efficiency, stability, and flexibility in tackling various cases, such as topography-dependent and 3D models, are tested through rigorous numerical tests, thus providing an efficient and stable PINN-based traveltime tomography. Compared with existing PINN-based inversion, our framework introduces more stability during the inversion and offers significant convergence speedups.

REFERENCES

  • Aki, K., A. Christoffersson, and E. S. Husebye, 1977, Determination of the three-dimensional seismic structure of the lithosphere: Journal of Geophysical Research, 82, 277–296, doi: 10.1029/JB082i002p00277.JGREA20148-0227
  • Alkhalifah, T., 2002, Traveltime computation with the linearized eikonal equation for anisotropic media: Geophysical Prospecting, 50, 373–382, doi: 10.1046/j.1365-2478.2002.00322.x.GPPRAR0016-8025
  • Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, 2018, Automatic differentiation in machine learning: A survey: Journal of Machine Learning Research, 18, 1–43.
  • Bergman, B., A. Tryggvason, and C. Juhlin, 2004, High-resolution seismic traveltime tomography incorporating static corrections applied to a till-covered bedrock environment: Geophysics, 69, 1082–1090, doi: 10.1190/1.1778250.GPYSA70016-8033
  • Bording, R. P., A. Gersztenkorn, L. R. Lines, J. A. Scales, and S. Treitel, 1987, Applications of seismic travel-time tomography: Geophysical Journal International, 90, 285–303, doi: 10.1111/j.1365-246X.1987.tb00728.x.GJINEA0956-540X
  • Červený, V., 2000, Seismic ray method: Cambridge University Press.
  • Chen, Y., S. A. de Ridder, S. Rost, Z. Guo, X. WuChen, Y., 2022, Eikonal tomography with physics-informed neural networks: Rayleigh wave phase velocity in the northeastern margin of the Tibetan Plateau: Geophysical Research Letters, 49, e2022GL099053, doi: 10.1029/2022GL099053.GPRLAJ0094-8276
  • Chen, Y., S. A. de Ridder, S. Rost, Z. Guo, X. Wu, S. LiChen, Y., 2023, Physics-informed neural networks for elliptical-anisotropy eikonal tomography: Application to data from the northeastern Tibetan Plateau: Journal of Geophysical Research: Solid Earth, 128, e2023JB027378, doi: 10.1029/2023JB027378.
  • Dessa, J.-X., S. Operto, S. Kodaira, A. Nakanishi, G. Pascal, K. Uhira, and Y. Kaneda, 2004, Deep seismic imaging of the eastern Nankai trough, Japan, from multifold ocean bottom seismometer data by combined travel time tomography and prestack depth migration: Journal of Geophysical Research: Solid Earth, 109, B02111, doi: 10.1029/2003JB002689.
  • Dziewonski, A. M., B. H. Hager, and R. J. O’Connell, 1977, Large-scale heterogeneities in the lower mantle: Journal of Geophysical Research, 82, 239–255, doi: 10.1029/JB082i002p00239.JGREA20148-0227
  • Fang, H., M. C. White, Y. Lu, and Y. Ben-Zion, 2022, Seismic traveltime tomography of Southern California using Poisson-Voronoi cells and 20 years of data: Journal of Geophysical Research: Solid Earth, 127, e2021JB023307, doi: 10.1029/2021JB023307.
  • Fang, H., H. Zhang, H. Yao, A. Allam, D. Zigone, Y. Ben-Zion, C. Thurber, and R. D. van der Hilst, 2016, A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region: Journal of Geophysical Research: Solid Earth, 121, 3557–3569, doi: 10.1002/2015JB012702.
  • Fichtner, A., 2010, Full seismic waveform modelling and inversion: Springer Science & Business Media.
  • Fomel, S., S. Luo, and H. Zhao, 2009, Fast sweeping method for the factored eikonal equation: Journal of Computational Physics, 228, 6440–6455, doi: 10.1016/j.jcp.2009.05.029.JCTPAH0021-9991
  • Glorot, X., and Y. Bengio, 2010, Understanding the difficulty of training deep feedforward neural networks: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 249–256.
  • Hauksson, E., W. Yang, and P. M. Shearer, 2012, Waveform relocated earthquake catalog for Southern California (1981 to June 2011): Bulletin of the Seismological Society of America, 102, 2239–2244, doi: 10.1785/0120120010.BSSAAP0037-1106
  • Hornik, K., M. Stinchcombe, and H. White, 1989, Multilayer feedforward networks are universal approximators: Neural Networks, 2, 359–366, doi: 10.1016/0893-6080(89)90020-8.NNETEB0893-6080
  • Julian, B., and D. Gubbins, 1977, Three-dimensional seismic ray tracing: Journal of Geophysics, 43, 95–113.JGEOD40340-062X
  • Kingma, D. P., and J. Ba, 2014, Adam: A method for stochastic optimization: arXiv preprint, doi: 10.48550/arXiv.1412.6980.
  • Klein, F., 2002, User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes: Open File Report 02-171: US Geological Survey, 1–123.
  • Leung, S., and J. Qian, 2006, An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals: Communications in Mathematical Sciences, 4, 249–266, doi: 10.4310/CMS.2006.v4.n1.a10.1539-6746
  • Lin, F.-C., and M. H. Ritzwoller, 2011, Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure: Geophysical Journal International, 186, 1104–1120, doi: 10.1111/j.1365-246X.2011.05070.x.GJINEA0956-540X
  • Lin, F.-C., M. H. Ritzwoller, and R. Snieder, 2009, Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array: Geophysical Journal International, 177, 1091–1110, doi: 10.1111/j.1365-246X.2009.04105.x.GJINEA0956-540X
  • Lin, F.-C., M. H. Ritzwoller, J. Townend, S. Bannister, and M. K. Savage, 2007, Ambient noise Rayleigh wave tomography of New Zealand: Geophysical Journal International, 170, 649–666, doi: 10.1111/j.1365-246X.2007.03414.x.GJINEA0956-540X
  • Marsden, D., 1993, Static corrections — A review, Part 1: The Leading Edge, 12, 43–49, doi: 10.1190/1.1436912.
  • McClenny, L., and U. Braga-Neto, 2020, Self-adaptive physics-informed neural networks using a soft attention mechanism: arXiv preprint, doi: 10.48550/arXiv.2009.04544.
  • Obrebski, M., R. M. Allen, F. Zhang, J. Pan, Q. Wu, and S.-H. Hung, 2012, Shear wave tomography of China using joint inversion of body and surface wave constraints: Journal of Geophysical Research: Solid Earth, 117, B01311, doi: 10.1029/2011JB008349.
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246X.2006.02978.x.GJINEA0956-540X
  • Qin, F., Y. Luo, K. B. Olsen, W. Cai, and G. T. Schuster, 1992, Finite-difference solution of the eikonal equation along expanding wavefronts: Geophysics, 57, 478–487, doi: 10.1190/1.1443263.GPYSA70016-8033
  • Rahaman, N., A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville, 2019, On the spectral bias of neural networks: International Conference on Machine Learning, 5301–5310.
  • Raissi, M., P. Perdikaris, and G. E. Karniadakis, 2019, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations: Journal of Computational Physics, 378, 686–707, doi: 10.1016/j.jcp.2018.10.045.JCTPAH0021-9991
  • Rawlinson, N., and S. Fishwick, 2012, Seismic structure of the Southeast Australian lithosphere from surface and body wave tomography: Tectonophysics, 572, 111–122, doi: 10.1016/j.tecto.2011.11.016.TCTOAM0040-1951
  • Rawlinson, N., J. Hauser, and M. Sambridge, 2008, Seismic ray tracing and wavefront tracking in laterally heterogeneous media: Advances in Geophysics, 49, 203–273, doi: 10.1016/S0065-2687(07)49003-3.ADGOAR0065-2687
  • Rawlinson, N., and M. Sambridge, 2004, Wave front evolution in strongly heterogeneous layered media using the fast marching method: Geophysical Journal International, 156, 631–647, doi: 10.1111/j.1365-246X.2004.02153.x.GJINEA0956-540X
  • Schiassi, E., C. Leake, M. D. Florio, H. Johnston, R. Furfaro, and D. Mortari, 2020, Extreme theory of functional connections: A physics-informed neural network method for solving parametric differential equations: arXiv preprint, doi: 10.48550/arXiv.2005.10632.
  • Sethian, J. A., 1996, A fast marching level set method for monotonically advancing fronts: Proceedings of the National Academy of Sciences, 93, 1591–1595, doi: 10.1073/pnas.93.4.1591.
  • Simmons, N. A., S. C. Myers, G. Johannesson, and E. Matzel, 2012, LLNL-G3DV3: Global P wave tomography model for improved regional and teleseismic travel time prediction: Journal of Geophysical Research: Solid Earth, 117, B10302, doi: 10.1029/2012JB009525.
  • Simmons, N. A., S. C. Myers, C. Morency, A. Chiang, and D. R. Knapp, 2021, Spiral: A multiresolution global tomography model of seismic wave speeds and radial anisotropy variations in the crust and mantle: Geophysical Journal International, 227, 1366–1391, doi: 10.1093/gji/ggab277.GJINEA0956-540X
  • Smith, J. D., K. Azizzadenesheli, and Z. E. Ross, 2021, Eikonet: Solving the eikonal equation with deep neural networks: IEEE Transactions on Geoscience and Remote Sensing, 59, 10685–10696, doi: 10.1109/TGRS.2020.3039165.IGRSD20196-2892
  • Taillandier, C., M. Noble, H. Chauris, and H. Calandra, 2009, First-arrival traveltime tomography based on the adjoint-state method: Geophysics, 74, no. 6, WCB1–WCB10, doi: 10.1190/1.3250266.GPYSA70016-8033
  • Taufik, M., T. Alkhalifah, and U. Waheed, 2023, A stable neural network-based eikonal tomography using hard-constrained measurements: Authorea.
  • Taufik, M. H., U. Waheed, and T. Alkhalifah, 2022, Upwind, no more: Flexible traveltime solutions using physics-informed neural networks: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–12, doi: 10.1109/TGRS.2022.3218754.IGRSD20196-2892
  • Tavakoli, F. B., S. Operto, A. Ribodetti, and J. Virieux, 2017, Slope tomography based on eikonal solvers and the adjoint-state method: Geophysical Journal International, 209, 1629–1647, doi: 10.1093/gji/ggx111.GJINEA0956-540X
  • Thurber, C. H., 1983, Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California: Journal of Geophysical Research: Solid Earth, 88, 8226–8236, doi: 10.1029/JB088iB10p08226.
  • Treister, E., and E. Haber, 2016, A fast marching algorithm for the factored eikonal equation: Journal of Computational Physics, 324, 210–225, doi: 10.1016/j.jcp.2016.08.012.JCTPAH0021-9991
  • Um, J., and C. Thurber, 1987, A fast algorithm for two-point seismic ray tracing: Bulletin of the Seismological Society of America, 77, 972–986, doi: 10.1785/BSSA0770030972.BSSAAP0037-1106
  • Vidale, J., 1988, Finite-difference calculation of travel times: Bulletin of the Seismological Society of America, 78, 2062–2076.BSSAAP0037-1106
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033
  • Waheed, U., T. Alkhalifah, E. Haghighat, C. Song, and J. Virieux, 2021a, PINNtomo: Seismic tomography using physics-informed neural networks: arXiv preprint, doi: 10.48550/arXiv.2104.01588.
  • Waheed, U., E. Haghighat, T. Alkhalifah, C. Song, and Q. Hao, 2021b, PINNeik: Eikonal solution using physics-informed neural networks: Computers & Geosciences, 155, 104833, doi: 10.1016/j.cageo.2021.104833.
  • Wang, S., S. Sankaran, and P. Perdikaris, 2022, Respecting causality is all you need for training physics-informed neural networks: arXiv preprint, doi: 10.48550/arXiv.2203.07404.
  • White, M. C., H. Fang, R. D. Catchings, M. R. Goldman, J. H. Steidl, and Y. Ben-Zion, 2021, Detailed traveltime tomography and seismic catalogue around the 2019 Mw7.1 Ridgecrest, California, earthquake using dense rapid-response seismic data: Geophysical Journal International, 227, 204–227, doi: 10.1093/gji/ggab224.GJINEA0956-540X
  • White, M. C., H. Fang, N. Nakata, and Y. Ben-Zion, 2020, Pykonal: A Python package for solving the eikonal equation in spherical and Cartesian coordinates using the fast marching method: Seismological Research Letters, 91, 2378–2389, doi: 10.1785/0220190318.SRLEEG0895-0695
  • Yu, J., L. Lu, X. Meng, and G. E. Karniadakis, 2022, Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems: Computer Methods in Applied Mechanics and Engineering, 393, 114823, doi: 10.1016/j.cma.2022.114823.CMMECC0045-7825
  • Zelt, C. A., A. Azaria, and A. Levander, 2006, 3D seismic refraction traveltime tomography at a groundwater contamination site: Geophysics, 71, no. 5, H67–H78, doi: 10.1190/1.2258094.GPYSA70016-8033
  • Zelt, C. A., and P. J. Barton, 1998, Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the faeroe basin: Journal of Geophysical Research: Solid Earth, 103, 7187–7210, doi: 10.1029/97JB03536.
  • Zhang, H., and C. H. Thurber, 2003, Double-difference tomography: The method and its application to the Hayward fault, California: Bulletin of the Seismological Society of America, 93, 1875–1889, doi: 10.1785/0120020190.BSSAAP0037-1106
  • Zhang, J., and M. N. Toksöz, 1998, Nonlinear refraction traveltime tomography: Geophysics, 63, 1726–1737, doi: 10.1190/1.1444468.GPYSA70016-8033
  • Zhao, H., 2005, A fast sweeping method for eikonal equations: Mathematics of Computation, 74, 603–627, doi: 10.1090/S0025-5718-04-01678-3.MCMPAF0025-5718