This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Full-parametric and joint inversion of multimode surface wave data for identifying glacial ice thickness and freezing extent in subglacial sediments via the hunger games search algorithm

Authors:

Determining glacier ice thickness and the extent of freezing in subglacial sediments are crucial in glaciological studies. Noninvasive geophysical methods, such as multichannel analysis of surface waves, are typically used for these tasks. In this study, we introduce a novel metaheuristic called hunger games search (HGS), which simulates the hunger-driven instincts and behavioral decisions of animals for the full-parametric inversion of seismic surface waves. We apply HGS to determine layer thicknesses, densities, S-wave velocities, and primary wave velocities of different layers through the joint inversion of multimode Rayleigh wave dispersion curves (RWDCs). This marks the first study using HGS for the inversion of dispersion data. Sensitivity studies of model parameters prior to the inversion indicate the necessity of postinversion uncertainty evaluations to mitigate the effects of varying sensitivity levels. In addition, a parameter tuning study is carried out to maximize the performance of HGS. Compared with some swarm intelligence-based optimizers (particle swarm optimization, cuckoo search, gray wolf optimization, sparrow search optimization, and whale optimization algorithm), HGS outperforms in the inversion of synthetic multimode RWDCs with 10% uncertainties with respect to a simulated glacier structure. In real data applications, a data set acquired at Midtdalsbreen, an outlet of the Norwegian Hardangerjøkulen ice cap, is inverted using the tailored HGS metaheuristic. The results obtained are consistent with previous geophysical studies. Furthermore, our analysis reveals that the performance of HGS when dealing with real applications is not highly sensitive to the selection of layers within the range of five to eight. The accuracy of HGS is undoubtedly contaminated by a larger model space; however, additional depth information derived from colocated ground-penetrating radar data can be directly integrated into HGS to obtain satisfactory results again.

REFERENCES

  • Ai, H., Y. L. Ekinci, Ç. Balkaya, and K. S. Essa, 2023, Inversion of geomagnetic anomalies caused by ore masses using Hunger Games Search algorithm: Earth and Space Science, 10, e2023EA003002, doi: 10.1029/2023EA003002.
  • Andersen, J., and J. Sollid, 1971, Glacial chronology and glacial geomorphology in the marginal zones of the glaciers, Midtdalsbreen and Nigardsbreen, south Norway: Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 25, 1–38, doi: 10.1080/00291957108551908.
  • Andreassen, L. M., S. H. Winsvold, F. Paul, and J. E. Hausberg, 2012, Inventory of Norwegian glaciers: Rapport, 38.
  • Balkaya, Ç., and I. Kaftan, 2021, Inverse modelling via differential search algorithm for interpreting magnetic anomalies caused by 2D dyke-shaped bodies: Journal of Earth System Science, 130, 1–23, doi: 10.1007/s12040-021-01614-1.
  • Booth, A. D., R. Clark, and T. Murray, 2010, Semblance response to a ground-penetrating radar wavelet and resulting errors in velocity analysis: Near Surface Geophysics, 8, 235–246, doi: 10.3997/1873-0604.2010008.
  • Booth, A. D., R. A. Clark, and T. Murray, 2011, Influences on the resolution of GPR velocity analyses and a Monte Carlo simulation for establishing velocity precision: Near Surface Geophysics, 9, 399–411, doi: 10.3997/1873-0604.2011019.
  • Chen, X., J. Xia, J. Pang, C. Zhou, and B. Mi, 2022, Deep learning inversion of Rayleigh-wave dispersion curves with geological constraints for near-surface investigations: Geophysical Journal International, 231, 1–14, doi: 10.1093/gji/ggac171.GJINEA0956-540X
  • Cox, B. R., and D. P. Teague, 2016, Layering ratios: A systematic approach to the inversion of surface wave data in the absence of a priori information: Geophysical Journal International, 207, 422–438, doi: 10.1093/gji/ggw282.GJINEA0956-540X
  • Dal Moro, G., 2015, Joint analysis of Rayleigh-wave dispersion and HVSR of lunar seismic data from the Apollo 14 and 16 sites: Icarus, 254, 338–349, doi: 10.1016/j.icarus.2015.03.017.ICRSA50019-1035
  • Dal Moro, G., and F. Ferigo, 2011, Joint analysis of Rayleigh- and Love-wave dispersion: Issues, criteria and improvements: Journal of Applied Geophysics, 75, 573–589, doi: 10.1016/j.jappgeo.2011.09.008.JAGPEA0926-9851
  • Dal Moro, G., and M. Pipan, 2007, Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms: Journal of Applied Geophysics, 61, 56–81, doi: 10.1016/j.jappgeo.2006.04.001.JAGPEA0926-9851
  • Das, V., A. Pollack, U. Wollner, and T. Mukerji, 2019, Convolutional neural network for seismic impedance inversion: Geophysics, 84, no. 6, R869–R880, doi: 10.1190/geo2018-0838.1.GPYSA70016-8033
  • de Figueiredo, L. P., D. Grana, M. Roisenberg, and B. B. Rodrigues, 2019, Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion: Geophysics, 84, no. 5, M1–M13, doi: 10.1190/geo2018-0839.1.GPYSA70016-8033
  • Dou, S., and J. B. Ajo-Franklin, 2014, Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost: Geophysics, 79, no. 6, EN107–EN124, doi: 10.1190/geo2013-0427.1.GPYSA70016-8033
  • Eisen, O., U. Nixdorf, L. Keck, and D. Wagenbach, 2011, Alpine ice cores and ground penetrating radar: Combined investigations for glaciological and climatic interpretations of a cold Alpine ice body: Tellus B: Chemical and Physical Meteorology, 55, 1007–1017, doi: 10.3402/tellusb.v55i5.16394.
  • Ekinci, Y. L., Ç. Balkaya, G. Göktürkler, and H. Ai, 2023, 3D gravity inversion for the basement relief reconstruction through modified success–history-based adaptive differential evolution: Geophysical Journal International, 235, 377–400, doi: 10.1093/gji/ggad222.GJINEA0956-540X
  • Engelbrecht, A. P., 2007, Computational intelligence: An introduction: John Wiley & Sons.
  • Etzelmüller, B., and J. O. Hagen, 2005, Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard: Geological Society, London, Special Publications, 242, 11–27.
  • Farinotti, D., and Itmix Consortium, 2017, Results from ITMIX — The ice thickness models intercomparison experiment: EGU General Assembly Conference Abstracts.
  • Forbriger, T., 2003, Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms: Geophysical Journal International, 153, 735–752, doi: 10.1046/j.1365-246X.2003.01985.x.GJINEA0956-540X
  • Foti, S., C. Comina, D. Boiero, and L. Socco, 2009, Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses: Soil Dynamics and Earthquake Engineering, 29, 982–993, doi: 10.1016/j.soildyn.2008.11.004.
  • Gagnon, R., H. Kiefte, M. Clouter, and E. Whalley, 1988, Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy: The Journal of Chemical Physics, 89, 4522–4528, doi: 10.1063/1.454792.
  • Gao, L., J. Xia, Y. Pan, and Y. Xu, 2016, Reason and condition for mode kissing in MASW method: Pure and Applied Geophysics, 173, 1627–1638, doi: 10.1007/s00024-015-1208-5.PAGYAV0033-4553
  • Garofalo, F., G. Sauvin, L. V. Socco, and I. Lecomte, 2015, Joint inversion of seismic and electric data applied to 2D media: Geophysics, 80, no. 4, EN93–EN104, doi: 10.1190/geo2014-0313.1.GPYSA70016-8033
  • Garofalo, F., L. V. Socco, and S. Foti, 2022, Joint inversion of seismic and electrical data in saturated porous media: Near Surface Geophysics, 20, 64–81, doi: 10.1002/nsg.12184.
  • Gazetas, G., 1982, Vibrational characteristics of soil deposits with variable wave velocity: International Journal for Numerical and Analytical Methods in Geomechanics, 6, 1–20, doi: 10.1002/nag.1610060103.IJNGDZ1096-9853
  • Hu, J., H. Qiu, H. Zhang, and Y. Ben-Zion, 2020, Using deep learning to derive shear-wave velocity models from surface-wave dispersion data: Seismological Research Letters, 91, 1738–1751, doi: 10.1785/0220190222.SRLEEG0895-0695
  • Jacoby, M., J. Dvorkin, and X. Liu, 1996, Elasticity of partially saturated frozen sand: Geophysics, 61, 288–293, doi: 10.1190/1.1443951.GPYSA70016-8033
  • Johansen, T. A., P. Digranes, M. van Schaack, and I. Lønne, 2003, Seismic mapping and modeling of near-surface sediments in polar areas: Geophysics, 68, 566–573, doi: 10.1190/1.1567226.GPYSA70016-8033
  • Kennedy, J., and R. Eberhart, 1995, Particle swarm optimization: Proceedings of International Conference on Neural Networks.
  • Killingbeck, S., P. Livermore, A. Booth, and L. West, 2018, Multimodal layered transdimensional inversion of seismic dispersion curves with depth constraints: Geochemistry, Geophysics, Geosystems, 19, 4957–4971, doi: 10.1029/2018GC008000.
  • Killingbeck, S. F., A. D. Booth, P. W. Livermore, C. R. Bates, and L. J. West, 2020, Characterisation of subglacial water using a constrained transdimensional Bayesian transient electromagnetic inversion: Solid Earth, 11, 75–94, doi: 10.5194/se-11-75-2020.
  • Killingbeck, S. F., A. D. Booth, P. W. Livermore, L. J. West, B. T. Reinardy, and A. Nesje, 2019, Subglacial sediment distribution from constrained seismic inversion, using multi software: Examples from Midtdalsbreen, Norway: Annals of Glaciology, 60, 206–219, doi: 10.1017/aog.2019.13.ANGLDN0260-3055
  • Killingbeck, S. F., C. F. Dow, and M. J. Unsworth, 2022, A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics: Journal of Glaciology, 68, 319–336, doi: 10.1017/jog.2021.94.
  • Kirkpatrick, S., C. D. Gelatt Jr, and M. P. Vecchi, 1983, Optimization by simulated annealing: Science, 220, 671–680, doi: 10.1126/science.220.4598.671.SCIEAS0036-8075
  • Kutuzov, S., L. G. Thompson, I. Lavrentiev, and L. Tian, 2018, Ice thickness measurements of Guliya ice cap, western Kunlun Mountains (Tibetan Plateau), China: Journal of Glaciology, 64, 977–989, doi: 10.1017/jog.2018.91.
  • Lee, M. W., 2002, Biot–Gassmann theory for velocities of gas hydrate-bearing sediments: Geophysics, 67, 1711–1719, doi: 10.1190/1.1527072.GPYSA70016-8033
  • Lehujeur, M., J. Vergne, J. Schmittbuhl, D. Zigone, A. Le Chenadec, and E. Team, 2018, Reservoir imaging using ambient noise correlation from a dense seismic network: Journal of Geophysical Research: Solid Earth, 123, 6671–6686, doi: 10.1029/2018JB015440.
  • Li, J., X. Song, X. Zhang, S. Yuan, L. Wang, and K. Zhang, 2024, A new method for estimation of Rayleigh wave group velocity spectrum: Geophysics, 89, no. 3, V231–V241, doi: 10.1190/geo2023-0458.1.GPYSA70016-8033
  • Maraschini, M., F. Ernst, S. Foti, and L. V. Socco, 2010, A new misfit function for multimodal inversion of surface waves: Geophysics, 75, no. 4, G31–G43, doi: 10.1190/1.3436539.GPYSA70016-8033
  • Mi, B., J. Xia, C. Shen, and L. Wang, 2018, Dispersion energy analysis of Rayleigh and Love waves in the presence of low-velocity layers in near-surface seismic surveys: Surveys in Geophysics, 39, 271–288, doi: 10.1007/s10712-017-9440-4.SUGEEC0169-3298
  • Mianshui, R., F. Li-Yun, S.-S. Francisco José, and S. Weijia, 2022, Joint inversion of earthquake-based horizontal-to-vertical spectral ratio and phase velocity dispersion: Applications to Garner Valley: Frontiers in Earth Science, 10, 948697, doi: 10.3389/feart.2022.948697.
  • Nimiya, H., T. Ikeda, and T. Tsuji, 2023, Multimodal Rayleigh and Love wave joint inversion for S-wave velocity structures in Kanto Basin, Japan: Journal of Geophysical Research: Solid Earth, 128, e2022JB025017, doi: 10.1029/2022JB025017.
  • O’Neill, A., M. Dentith, and R. List, 2003, Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications: Exploration Geophysics, 34, 158–173, doi: 10.1071/EG03158.
  • Park, C. B., R. D. Miller, and J. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808, doi: 10.1190/1.1444590.GPYSA70016-8033
  • Park, C. B., R. D. Miller, and J. Xia, 2001, Offset and resolution of dispersion curve in multichannel analysis of surface waves (MASW): Symposium on the Application of Geophysics to Engineering and Environmental Problems 2001.
  • Passeri, F., S. Foti, B. R. Cox, and A. Rodriguez-Marek, 2019, Influence of epistemic uncertainty in shear wave velocity on seismic ground response analyses: Earthquake Spectra, 35, 929–954, doi: 10.1193/011018EQS005M.
  • Reinardy, B. T., A. D. Booth, A. L. Hughes, C. M. Boston, H. Åkesson, J. Bakke, A. Nesje, R. H. Giesen, and D. M. Pearce, 2019, Pervasive cold ice within a temperate glacier — Implications for glacier thermal regimes, sediment transport and foreland geomorphology: The Cryosphere, 13, 827–843, doi: 10.5194/tc-13-827-2019.
  • Reinardy, B. T., I. Leighton, and P. J. Marx, 2013, Glacier thermal regime linked to processes of annual moraine formation at Midtdalsbreen, southern Norway: Boreas, 42, 896–911, doi: 10.1111/bor.12008.BRESB30300-9483
  • Sambridge, M., and K. Mosegaard, 2002, Monte Carlo methods in geophysical inverse problems: Reviews of Geophysics, 40, 3-1–3-29, doi: 10.1029/2000RG000089.REGEEP8755-1209
  • Sen, M. K., and P. L. Stoffa, 1991, Nonlinear one-dimensional seismic waveform inversion using simulated annealing: Geophysics, 56, 1624–1638, doi: 10.1190/1.1442973.GPYSA70016-8033
  • Sen, M. K., and P. L. Stoffa, 2013a, Global optimization methods in geophysical inversion || Geophysical applications of simulated annealing and genetic algorithms: Cambridge University Press.
  • Sen, M. K., and P. L. Stoffa, 2013b, Global optimization methods in geophysical inversion || Monte Carlo methods: Cambridge University Press.
  • Senkaya, M., and H. Karsli, 2015, The sensitivity analysis as a non-uniqueness indicator in the inversion of Rayleigh-wave dispersion curve: Near Surface Geoscience 2015-21st European Meeting of Environmental and Engineering Geophysics, doi: 10.3997/2214-4609.201413743.
  • Senkaya, M., H. Karsli, L. V. Socco, and S. Foti, 2020, Obtaining reliable S-wave velocity depth profile by joint inversion of geophysical data: The combination of active surface-wave, seismic refraction and electric sounding data: Near Surface Geophysics, 18, 659–682, doi: 10.1002/nsg.12126.
  • Song, W., X. Feng, G. Zhang, L. Gao, B. Yan, and X. Chen, 2022, Domain adaptation in automatic picking of phase velocity dispersions based on deep learning: Journal of Geophysical Research: Solid Earth, 127, e2021JB023389, doi: 10.1029/2021JB023389.
  • Song, X., L. Tang, X. Lv, H. Fang, and H. Gu, 2012, Application of particle swarm optimization to interpret Rayleigh wave dispersion curves: Journal of Applied Geophysics, 84, 1–13, doi: 10.1016/j.jappgeo.2012.05.011.JAGPEA0926-9851
  • Song, X., L. Tang, S. Zhao, X. Zhang, L. Li, J. Huang, and W. Cai, 2015, Grey wolf optimizer for parameter estimation in surface waves: Soil Dynamics and Earthquake Engineering, 75, 147–157, doi: 10.1016/j.soildyn.2015.04.004.
  • Soupios, P., I. Akca, P. Mpogiatzis, A. T. Basokur, and C. Papazachos, 2011, Applications of hybrid genetic algorithms in seismic tomography: Journal of Applied Geophysics, 75, 479–489, doi: 10.1016/j.jappgeo.2011.08.005.JAGPEA0926-9851
  • Stoffa, P., and M. Sen, 1992, Seismic waveform inversion using global optimization: Journal of Seismic Exploration, 1, 9–27.
  • Stokoe, K. H., S. Wright, J. Bay, and J. Roesset, 1994, Characterization of geotechnical sites by SASW method, in R. D. Woods, ed., Geophysical characterization of sites: ISSMFE Technical Committee, 15–25.
  • Stuart, G. K., S. E. Minkoff, and F. Pereira, 2019, A two-stage Markov chain Monte Carlo method for seismic inversion and uncertainty quantification: Geophysics, 84, no. 6, R1003–R1020, doi: 10.1190/geo2018-0893.1.GPYSA70016-8033
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.
  • Tsuji, T., T. A. Johansen, B. O. Ruud, T. Ikeda, and T. Matsuoka, 2012, Surface-wave analysis for identifying unfrozen zones in subglacial sediments: Geophysics, 77, no. 3, EN17–EN27, doi: 10.1190/geo2011-0222.1.GPYSA70016-8033
  • Vashisth, D., A. Routa, P. R. Mohanty, and S. Srivastava, 2019, Whale optimization algorithm: A robust strategy to invert geophysical data sets: AGU Fall Meeting 2019, Abstract.
  • Vashisth, D., B. Shekar, and S. Srivastava, 2022, Joint inversion of Rayleigh wave fundamental and higher order mode phase velocity dispersion curves using multi-objective grey wolf optimization: Geophysical Prospecting, 70, 479–501, doi: 10.1111/1365-2478.13176.GPPRAR0016-8025
  • Vincent, C., M. Descloitres, S. Garambois, A. Legchenko, H. Guyard, and A. Gilbert, 2012, Detection of a subglacial lake in Glacier de Tête Rousse (Mont Blanc area, France): Journal of Glaciology, 58, 866–878, doi: 10.3189/2012JoG11J179.
  • Wang, Y., X. Song, X. Zhang, S. Yuan, K. Zhang, L. Wang, Z. Le, and W. Cai, 2023, Multi-objective particle swarm optimization for multimode surface wave analysis: Computers & Geosciences, 176, 105343, doi: 10.1016/j.cageo.2023.105343.
  • Wathelet, M., 2005, Array recordings of ambient vibrations: Surface-wave inversion: Ph.D. Dissertation, Liége University, 161.
  • Watts, H., A. D. Booth, B. T. Reinardy, S. F. Killingbeck, P. Jansson, R. A. Clark, B. M. Chandler, and A. Nesje, 2022, An assessment of geophysical survey techniques for characterising the subsurface around glacier margins, and recommendations for future applications: Frontiers in Earth Science, 10, 734682, doi: 10.3389/feart.2022.734682.
  • Welty, E., M. Zemp, F. Navarro, M. Huss, J. J. Fürst, I. Gärtner-Roer, J. Landmann, H. Machguth, K. Naegeli, and L. M. Andreassen, 2020, Worldwide version-controlled database of glacier thickness observations: Earth System Science Data Discussions, 2020, 1–27.
  • Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.GPYSA70016-8033
  • Xia, J., R. D. Miller, C. B. Park, and G. Tian, 2003, Inversion of high frequency surface waves with fundamental and higher modes: Journal of Applied Geophysics, 52, 45–57, doi: 10.1016/S0926-9851(02)00239-2.JAGPEA0926-9851
  • Xue, J., and B. Shen, 2020, A novel swarm intelligence optimization approach: Sparrow search algorithm: Systems Science & Control Engineering, 8, 22–34, doi: 10.1080/21642583.2019.1708830.
  • Yablokov, A. V., A. S. Serdyukov, G. N. Loginov, and V. D. Baranov, 2021, An artificial neural network approach for the inversion of surface wave dispersion curves: Geophysical Prospecting, 69, 1405–1432, doi: 10.1111/1365-2478.13107.GPPRAR0016-8025
  • Yan, Y., X. Chen, N. Huai, and J. Guan, 2022, Modern inversion workflow of the multimodal surface wave dispersion curves: Staging strategy and pattern search with embedded Kuhn–Munkres algorithm: Geophysical Journal International, 231, 47–71, doi: 10.1093/gji/ggac178.GJINEA0956-540X
  • Yang, X.-H., and K.-V. Yuen, 2021, All-parameters Rayleigh wave inversion: Earthquake Engineering and Engineering Vibration, 20, 517–534, doi: 10.1007/s11803-021-2036-5.
  • Yang, X.-S., and S. Deb, 2014, Cuckoo search: Recent advances and applications: Neural Computing and Applications, 24, 169–174, doi: 10.1007/s00521-013-1367-1.
  • Yang, Y., H. Chen, A. A. Heidari, and A. H. Gandomi, 2021, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts: Expert Systems with Applications, 177, 114864, doi: 10.1016/j.eswa.2021.114864.ESAPEH0957-4174
  • Yang, Z., X. Chen, L. Pan, J. Wang, J. Xu, and D. Zhang, 2019, Multi-channel analysis of Rayleigh waves based on vector wavenumber tansformation method (VWTM): EGU General Assembly, Geophysical Research Abstracts.
  • Zekollari, H., J. J. Fürst, and P. Huybrechts, 2014, Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future: Journal of Glaciology, 60, 1155–1168, doi: 10.3189/2014JoG14J053.
  • Zhang, Z., T. Alkhalifah, and Y. Liu, 2024, Full dispersion-spectrum inversion of surface waves: Journal of Geophysical Research: Solid Earth, 129, e2023JB028469, doi: 10.1029/2023JB028469.
  • Zhang, D., B. Yang, Z. Yang, M. Zhang, Z. Xiong, D. Zhu, and X. Zhang, 2022, Multimodal inversion of Rayleigh wave dispersion curves based on a generalized misfit function: Journal of Applied Geophysics, 207, 104849, doi: 10.1016/j.jappgeo.2022.104849.
  • Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems, Vol. 36: Elsevier.
  • Zimmerman, R. W., and M. S. King, 1986, The effect of the extent of freezing on seismic velocities in unconsolidated permafrost: Geophysics, 51, 1285–1290, doi: 10.1190/1.1442181.GPYSA70016-8033