This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Determination of the VS profile at a “noisy” industrial site via active and passive data: The critical role of Love waves and the opportunities of multicomponent group velocity analysis

Authors:

To define the procedures necessary to unambiguously define the subsurface model, a comprehensive set of active and passive seismic data was collected in an industrial area characterized by an extremely high level of background microtremors. Passive data are recorded to define three observables: the dispersion curve of the vertical component of Rayleigh waves via miniature array analysis of microtremors, the Love-wave dispersion curve via extended spatial autocorrelation, and the horizontal-to-vertical spectral ratio (HVSR). Active data used for the holistic analysis of surface waves are extracted from data recorded through a hybrid acquisition procedure accomplished with only two 3C geophones used to simultaneously define the HVSR at two points. Defined observables are combined according to three different approaches: the joint analysis of Rayleigh waves and HVSR, the joint analysis of Rayleigh and Love waves together with the HVSR, and the joint analysis of multicomponent group velocities together with the HVSR and Rayleigh-wave particle motion (RPM) curves. In agreement with the theory, data indicate that, in general, surface-wave modeling cannot be performed considering modal dispersion curves: dispersion obtained from passive data needs to be modeled considering the effective curve, whereas group velocity obtained from active data can be analyzed using the full velocity spectrum technique. Results indicate that joint inversion of Rayleigh-wave dispersion and HVSR does not necessarily ensure the correctness of the obtained S-wave velocity (VS) profile and that Love waves represent a key observable to fully constrain an unambiguous inversion procedure. However, the joint analysis of multicomponent group velocity spectra (from active multicomponent single-offset data) together with the HVSR and RPM curves is a further efficient way to obtain robust VS profiles through the active and passive data obtained by a single 3C geophone.

REFERENCES

  • Anbazhagan, P., A. Uday, S. S. R. Moustafa, and N. S. N. Al-Arifi, 2016, Correlation of densities with shear wave velocities and SPT N values: Journal of Geophysics and Engineering, 13, 320–341, doi: 10.1088/1742-2132/13/3/320.
  • Arai, H., and K. Tokimatsu, 2004, S-wave velocity profiling by inversion of microtremor H/V spectrum: Bulletin of the Seismological Society of America, 94, 53–63, doi: 10.1785/0120030028.BSSAAP0037-1106
  • Arai, H., and K. Tokimatsu, 2005, S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum: Bulletin of the Seismological Society of America, 95, 1766–1778, doi: 10.1785/0120040243.BSSAAP0037-1106
  • Asano, K., T. Iwata, H. Sekiguchi, K. Somei, K. Miyakoshi, S. Aoi, and T. Kunugi, 2017, Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions: Earth, Planets and Space, 69, 108, doi: 10.1186/s40623-017-0694-3.EPSPFJ1343-8832
  • Asten, M. W., 2006, On bias and noise in passive seismic data from finite circular array data processed using SPAC methods: Geophysics, 71, no. 6, V153–V162, doi: 10.1190/1.2345054.GPYSA70016-8033
  • Asten, M. W., A. Askan, E. E. Ekincioglu, F. N. Sisman, and B. Ugurhan, 2014, Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise: Exploration Geophysics, 45, 74–85, doi: 10.1071/EG12026.
  • Asten, M. W., and K. Hayashi, 2018, Application of the spatial auto-correlation method for shear-wave velocity studies using ambient noise: Surveys in Geophysics, 39, 633–659, doi: 10.1007/s10712-018-9474-2.SUGEEC0169-3298
  • Babacan, A. E., K. Gelisli, and H. Ersoy, 2014, Seismic tomography and surface wave analysis based methodologies on evaluation of geotechnical properties of volcanic rocks: A case study: Journal of Earth Science, 25, 348–356, doi: 10.1007/s12583-014-0417-7.
  • Babuska, V., and M. Cara, 1991, Seismic anisotropy in the earth: Springer Science & Business Media.
  • Becker, T. W., 2011, Seismic anisotropy, in H. Gupta, ed., Encyclopedia of solid earth geophysics: Springer, 1070–1081, doi: 10.1007/978-90-481-8702-7_51.
  • Behr, Y., J. Townend, S. Bannister, and M. K. Savage, 2011, Crustal shear wave tomography of the Taupo Volcanic Zone, New Zealand, via ambient noise correlation between multiple three-component networks: Geochemistry, Geophysics, Geosystems, 12, Q03015, doi: 10.1029/2010GC003385.
  • Bensen, G. D., M. H. Ritzwoller, and N. M. Shapiro, 2008, Broadband ambient noise surface wave tomography across the United States: Journal of Geophysical Research: Solid Earth, 113, B05306, doi: 10.1029/2007JB005248.
  • Boxberger, T., M. Picozzi, and S. Parolai, 2011, Shallow geology characterization using Rayleigh and Love wave dispersion curves derived from seismic noise array measurements: Journal of Applied Geophysics, 75, 345–354, doi: 10.1016/j.jappgeo.2011.06.032.JAGPEA0926-9851
  • Cavallin, A., S. Lauzi, M. Marchetti, and N. Padovani, 1987, Carta geomorfologica della pianura friulana ad est del F. Tagliamento ed a sud dell’anfiteatro morenico (in Italian): Tagliamento ea sud dell’anfiteatro morenico, in V. Francani, ed., Atti della riunione dei ricercatori di geologia: Politecnico di Milano.
  • Cho, I., and T. Iwata, 2021, Limits and benefits of the spatial autocorrelation microtremor array method due to the incoherent noise, with special reference to the analysis of long wavelength ranges: Journal of Geophysical Research: Solid Earth, 126, e2020JB019850, doi: 10.1029/2020JB019850.
  • Cho, I., and S. Senna, 2016, Constructing a system to explore shallow velocity structures using a miniature microtremor array — Accumulating and utilizing large microtremor datasets—: Synthesiology English Edition, 9, 87–98, doi: 10.5571/syntheng.9.2_87.
  • Cho, I., S. Senna, and H. Fujiwara, 2013, Miniature array analysis of microtremors: Geophysics, 78, no. 1, KS13–KS23, doi: 10.1190/geo2012-0248.1.GPYSA70016-8033
  • Cho, I., S. Senna, A. Wakai, K. Jin, and H. Fujiwara, 2021, Basic performance of a spatial autocorrelation method for determining phase velocities of Rayleigh waves from microtremors, with special reference to the zero-crossing method for quick surveys with mobile seismic arrays: Geophysical Journal International, 226, 1676–1694, doi: 10.1093/gji/ggab149.GJINEA0956-540X
  • Cho, I., T. Tada, and Y. Shinozaki, 2006a, Centerless circular array method: Inferring phase velocities of Rayleigh waves in broad wavelength ranges using microtremor records: Journal of Geophysical Research: Solid Earth, 111, B09315, doi: 10.1029/2005JB004235.
  • Cho, I., T. Tada, Y. Shinozaki, P. Y. Bard, E. Chaljub, C. Cornou, F. Cotton, and P. Guéguen, 2006b, New methods of microtremor exploration: the centerless circular array method and the two-radius method: Third International Symposium on the Effects of Surface Geology on Seismic Motion, 335–344.
  • Cotte, N., and G. Laske, 2002, Testing group velocity maps for Eurasia: Geophysical Journal International, 150, 639–650, doi: 10.1046/j.1365-246X.2002.01719.x.GJINEA0956-540X
  • Dal Moro, G., 2011, Some aspects about surface wave and HVSR analyses: A short overview and a case study: Bollettino Di Geofisica Teorica Ed Applicata, 52, 241, doi: 10.4430/bgta0007.
  • Dal Moro, G., 2014, Surface wave analysis for near surface applications: Elsevier.
  • Dal Moro, G., 2015, Joint analysis of Rayleigh-wave dispersion and HVSR of lunar seismic data from the Apollo 14 and 16 sites: Icarus, 254, 338–349, doi: 10.1016/j.icarus.2015.03.017.ICRSA50019-1035
  • Dal Moro, G., 2019a, Effective active and passive seismics for the characterization of urban and remote areas: Four channels for seven objective functions: Pure and Applied Geophysics, 176, 1445–1465, doi: 10.1007/s00024-018-2043-2.PAGYAV0033-4553
  • Dal Moro, G., 2019b, Surface wave analysis: Improving the accuracy of the shear-wave velocity profile through the efficient joint acquisition and Full Velocity Spectrum (FVS) analysis of Rayleigh and Love waves: Exploration Geophysics, 50, 408–419, doi: 10.1080/08123985.2019.1606202.
  • Dal Moro, G., 2020a, Efficient joint analysis of surface waves and introduction to vibration analysis: Beyond the clichés: Springer.
  • Dal Moro, G., 2020b, The magnifying effect of a thin shallow stiff layer on Love waves as revealed by multi-component analysis of surface waves: Scientific Reports, 10, 1–13, doi: 10.1038/s41598-020-66070-1.
  • Dal Moro, G., 2020c, On the identification of industrial components in the Horizontal-to-Vertical Spectral Ratio (HVSR) from microtremors: Pure and Applied Geophysics, 177, 3831–3849, doi: 10.1007/s00024-020-02424-0.PAGYAV0033-4553
  • Dal Moro, G., 2023, MASW? A critical perspective on problems and opportunities in surface-wave analysis from active and passive data (with few legal considerations): Physics and Chemistry of the Earth, Parts A/B/C, 130, 103369, doi: 10.1016/j.pce.2023.103369.
  • Dal Moro, G., N. Al-Arifi, and S. R. Moustafa, 2019, On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies: Soil Dynamics and Earthquake Engineering, 125, 105742, doi: 10.1016/j.soildyn.2019.105742.
  • Dal Moro, G., N. S. Al-Arifi, and S. S. R. Moustafa, 2017, Analysis of Rayleigh-wave particle motion from active seismics: Bulletin of the Seismological Society of America, 107, 51–62, doi: 10.1785/0120160063.BSSAAP0037-1106
  • Dal Moro, G., V. Coviello, and G. Del Carlo, 2015c, Shear-wave velocity reconstruction via unconventional joint analysis of surface waves: A case study in the light of some theoretical aspects, in G. LollinoA. ManconiF. GuzzettiM. CulshawP. BobrowskyF. Luino, eds., Engineering geology for society and territory: Springer, 1177–1182.
  • Dal Moro, G., and F. Ferigo, 2011, Joint analysis of Rayleigh-and Love-wave dispersion: Issues, criteria and improvements: Journal of Applied Geophysics, 75, 573–589, doi: 10.1016/j.jappgeo.2011.09.008.JAGPEA0926-9851
  • Dal Moro, G., and L. Keller, 2017, RPM analysis and advanced joint processing of a SED (Swiss Seismological Service) dataset: Proceedings of the GNGTS [Gruppo Nazionale Di Geofisica Della Terra Solida] Congress, 693–696.
  • Dal Moro, G., L. Keller, N. S. Al-Arifi, and S. S. R. Moustafa, 2016, Shear-wave velocity profiling according to three alternative approaches: A comparative case study: Journal of Applied Geophysics, 134, 112–124, doi: 10.1016/j.jappgeo.2016.08.011.JAGPEA0926-9851
  • Dal Moro, G., R. M. M. Moura, and S. S. R. Moustafa, 2015b, Multi-component joint analysis of surface waves: Journal of Applied Geophysics, 119, 128–138, doi: 10.1016/j.jappgeo.2015.05.014.JAGPEA0926-9851
  • Dal Moro, G., S. S. R. Moustafa, and N. S. Al-Arifi, 2018, Improved holistic analysis of Rayleigh waves for single-and multi-offset data: Joint inversion of Rayleigh-wave particle motion and vertical-and radial-component velocity spectra: Pure and Applied Geophysics, 175, 67–88, doi: 10.1007/s00024-017-1694-8.PAGYAV0033-4553
  • Dal Moro, G., and G. F. Panza, 2022, Multiple-peak HVSR curves: Management and statistical assessment: Engineering Geology, 297, 106500, doi: 10.1016/j.enggeo.2021.106500.EGGOAO0013-7952
  • Dal Moro, G., and M. Pipan, 2007, Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms: Journal of Applied Geophysics, 61, 56–81, doi: 10.1016/j.jappgeo.2006.04.001.JAGPEA0926-9851
  • Dal Moro, G., M. Pipan, E. Forte, and I. Finetti, 2003, Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments: 73rd Annual International Meeting, SEG, Expanded Abstracts, 1247–1250, doi: 10.1190/1.1817508.
  • Dal Moro, G., R. Ponta, and R. Mauro, 2015a, Unconventional optimized surface wave acquisition and analysis: Comparative tests in a perilagoon area: Journal of Applied Geophysics, 114, 158–167, doi: 10.1016/j.jappgeo.2014.12.016.JAGPEA0926-9851
  • Dal Moro, G., and L. M. Puzzilli, 2017, Single-and multi-component inversion of Rayleigh waves acquired by a single 3-component geophone: An illustrative case study: Acta Geodynamica et Geomaterialia, 14, 431–444, doi: 10.13168/AGG.2017.0024.
  • Dal Moro, G., and J. Stemberk, 2022, Tools for the efficient analysis of surface waves from active and passive seismic data: Exploring an NE-Italy perilagoon area with significant lateral variations: Earth, Planets and Space, 74, 1880–5981, doi: 10.1186/s40623-022-01698-z.EPSPFJ1343-8832
  • De Nisco, G., and C. Nunziata, 2011, VS profiles from noise cross correlation at local and small scale: Pure and Applied Geophysics, 168, 509–520, doi: 10.1007/s00024-010-0119-8.PAGYAV0033-4553
  • Dou, S., and J. B. Ajo-Franklin, 2014, Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost: Geophysics, 79, no. 6, EN107–EN124, doi: 10.1190/geo2013-0427.1.GPYSA70016-8033
  • Dziewonski, A., 1971, A technique for the analysis of transient seismic signals: Bulletin of the Seismological Society of America, 61, 343–356.BSSAAP0037-1106
  • Fang, L., J. Wu, Z. Ding, and G. F. Panza, 2010, High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise: Geophysical Journal International, 181, 1171–1182, doi: 10.1111/j.1365-246X.2010.04571.x.GJINEA0956-540X
  • Feruglio, E., 1936, Sedimenti marini nel sottosuolo della bassa friulana: Bollettino Della Societa Geologica Italiana, 55, 129–138.BOGIAT
  • Fonseca, C. M., and P. J. Fleming, 1993, Genetic algorithms for multiobjective optimization: Formulation discussion and generalization: Icga, 93, 416–423.
  • Forbriger, T., 2003a, Inversion of shallow-seismic wavefields: I. Wavefield transformation: Geophysical Journal International, 153, 719–734, doi: 10.1046/j.1365-246X.2003.01929.x.GJINEA0956-540X
  • Forbriger, T., 2003b, Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms: Geophysical Journal International, 153, 735–752, doi: 10.1046/j.1365-246X.2003.01985.x.GJINEA0956-540X
  • Gao, L., J. Xia, Y. Pan, and Y. Xu, 2016, Reason and condition for mode kissing in MASW method: Pure and Applied Geophysics, 173, 1627–1638, doi: 10.1007/s00024-015-1208-5.PAGYAV0033-4553
  • Gaždová, R., P. Kolínský, J. Vilhelm, and J. Valenta, 2015, Combining surface waves and common methods for shallow geophysical survey: Near Surface Geophysics, 13, 19–32, doi: 10.3997/1873-0604.2014039.
  • Gu, X., K. Zuo, A. Tessari, and G. Gao, 2021, Effect of saturation on the characteristics of P-wave and S-wave propagation in nearly saturated soils using bender elements: Soil Dynamics and Earthquake Engineering, 145, 106742, doi: 10.1016/j.soildyn.2021.106742.
  • Hartzell, S., D. Carver, and R. A. Williams, 2001, Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake: Bulletin of the Seismological Society of America, 91, 468–478, doi: 10.1785/0120000235.BSSAAP0037-1106
  • Hayashi, K., M. W. Asten, W. J. Stephenson, C. Cornou, M. Hobiger, M. Pilz, and H. Yamanaka, 2022, Microtremor array method using spatial autocorrelation analysis of Rayleigh-wave data: Journal of Seismology, 26, 601–627, doi: 10.1007/s10950-021-10051-y.DXUEF71383-4649
  • Hayashi, K., and M. Craig, 2017, S-wave velocity measurement and the effect of basin geometry on site response, east San Francisco Bay area, California, USA: Physics and Chemistry of the Earth, Parts A/B/C, 98, 49–61, doi: 10.1016/j.pce.2016.07.001.
  • Herrmann, R. B., 2013, Computer programs in seismology: An evolving tool for instruction and research: Seismological Research Letters, 84, 1081–1088, doi: 10.1785/0220110096.SRLEEG0895-0695
  • Herrmann, R. B., 2022, Computer programs in seismology: Open Files.
  • Huang, R., X. Luo, B. Ji, P. Wang, A. Yu, Z. Zhai, and J. Zhou, 2015, Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm: Science China Technological Sciences, 58, 2122–2130, doi: 10.1007/s11431-015-5865-5.
  • Ikeda, T., T. Matsuoka, T. Tsuji, and K. Hayashi, 2012, Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method: Geophysical Journal International, 190, 541–552, doi: 10.1111/j.1365-246X.2012.05496.x.GJINEA0956-540X
  • Islam, T., and Z. Chik, 2011, Advanced performance in geotechnical engineering using tomography analysis: Environmental Earth Sciences, 63, 291–296, doi: 10.1007/s12665-010-0702-4.
  • Ivanov, J., R. D. Miller, J. Xia, and D. Steeples, 2005, The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model: Pure and Applied Geophysics, 162, 461–477, doi: 10.1007/s00024-004-2616-0.PAGYAV0033-4553
  • Kumar Thota, S., T. Duc Cao, and F. Vahedifard, 2021, Poisson’s ratio characteristic curve of unsaturated soils: Journal of Geotechnical and Geoenvironmental Engineering, 147, 4020149, doi: 10.1061/(ASCE)GT.1943-5606.0002424.JGGEFK1090-0241
  • Kvapil, J., J. Plomerová, H. Kampfová Exnerová, V. Babuška, G. Hetényi, and A. W. Group, 2021, Transversely isotropic lower crust of Variscan central Europe imaged by ambient noise tomography of the Bohemian Massif: Solid Earth, 12, 1051–1074, doi: 10.5194/se-12-1051-2021.
  • Lai, C. G., 1998, Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization: Georgia Institute of Technology.
  • Lai, C. G., M.-D. Mangriotis, and G. J. Rix, 2014, An explicit relation for the apparent phase velocity of Rayleigh waves in a vertically heterogeneous elastic half-space: Geophysical Journal International, 199, 673–687, doi: 10.1093/gji/ggu283.GJINEA0956-540X
  • Lai, C. G., and G. J. Rix, 2002, Solution of the Rayleigh eigenproblem in viscoelastic media: Bulletin of the Seismological Society of America, 92, 2297–2309, doi: 10.1785/0120010165.BSSAAP0037-1106
  • Leong, E. C., and Z. Y. Cheng, 2016, Effects of confining pressure and degree of saturation on wave velocities of soils: International Journal of Geomechanics, 16, D4016013, doi: 10.1061/(ASCE)GM.1943-5622.0000727.
  • Levshin, A. L., V. F. Pisarenko, and G. A. Pogrebinsky, 1972, On a frequency-time analysis of oscillations: Annales de Geophysique, 28, 211–218.AGEPA70003-4029
  • Levshin, A. L., M. H. Ritzwoller, M. P. Barmin, A. Villasenor, and C. A. Padgett, 2001, New constraints on the arctic crust and uppermost mantle: Surface wave group velocities, Pn and Sn: Physics of the Earth and Planetary Interiors, 123, 185–204, doi: 10.1016/S0031-9201(00)00209-0.PEPIAM0031-9201
  • L’Heureux, J.-S., and M. Long, 2017, Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays: Journal of Geotechnical and Geoenvironmental Engineering, 143, 4017013, doi: 10.1061/(ASCE)GT.1943-5606.0001645.JGGEFK1090-0241
  • Lin, F.-C., M. P. Moschetti, and M. H. Ritzwoller, 2008, Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps: Geophysical Journal International, 173, 281–298, doi: 10.1111/j.1365-246X.2008.03720.x.GJINEA0956-540X
  • Liu, X., and J. Yang, 2018, Effect of saturation on compression wave velocity of silty sand: 7th International Conference on Unsaturated Soils 2018.
  • Louie, J. N., 2001, Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays: Bulletin of the Seismological Society of America, 91, 347–364, doi: 10.1785/0120000098.BSSAAP0037-1106
  • Lu, Y., L. Stehly, A. Paul, and A. W. Group, 2018, High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise: Geophysical Journal International, 214, 1136–1150, doi: 10.1093/gji/ggy188.GJINEA0956-540X
  • Luke, B. A., C. Calderón-Macías, R. C. Stone, and M. Huynh, 2003, Non-uniqueness in inversion of seismic surface-wave data: 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, cp-190.
  • Lunedei, E., and D. Albarello, 2009, On the seismic noise wavefield in a weakly dissipative layered Earth: Geophysical Journal International, 177, 1001–1014, doi: 10.1111/j.1365-246X.2008.04062.x.GJINEA0956-540X
  • Lyu, C., Y. Capdeville, D. Al-Attar, and L. Zhao, 2021, Intrinsic non-uniqueness of the acoustic full waveform inverse problem: Geophysical Journal International, 226, 795–802, doi: 10.1093/gji/ggab134.GJINEA0956-540X
  • Malagnini, L., R. B. Herrmann, A. Mercuri, S. Opice, G. Biella, and R. de Franco, 1997, Shear-wave velocity structure of sediments from the inversion of explosion-induced Rayleigh waves: comparison with cross-hole measurements: Bulletin of the Seismological Society of America, 87, 1413–1421, doi: 10.1785/BSSA0870061413.BSSAAP0037-1106
  • Martelli, G., and C. Granati, 2010, A comprehensive hydrogeological view of the Friuli alluvial plain by means of a multi-annual quantitative and qualitative research survey: Memorie Descrittive Della Carta Geologica d’Italia, XC, 181–208.
  • Mordret, A., M. Landès, N. M. Shapiro, S. C. Singh, P. Roux, and O. I. Barkved, 2013, Near-surface study at the Valhall oil field from ambient noise surface wave tomography: Geophysical Journal International, 193, 1627–1643, doi: 10.1093/gji/ggt061.GJINEA0956-540X
  • Morgan, P., and M. Fernàndez, 1992, Neogene vertical movements and constraints on extension in the Catalan Coastal Ranges, Iberian Peninsula, and the Valencia trough (western Mediterranean): Tectonophysics, 203, 185–201, doi: 10.1016/0040-1951(92)90223-S.TCTOAM0040-1951
  • Moschetti, M. P., M. H. Ritzwoller, and N. M. Shapiro, 2007, Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps: Geochemistry, Geophysics, Geosystems, 8, Q08010, doi: 10.1029/2007GC001655.
  • Nakata, N., R. Snieder, T. Tsuji, K. Larner, and T. Matsuoka, 2011, Shear wave imaging from traffic noise using seismic interferometry by cross-coherence: Geophysics, 76, no. 6, SA97–SA106, doi: 10.1190/geo2010-0188.1.GPYSA70016-8033
  • Natale, M., C. Nunziata, and G. F. Panza, 2004, FTAN method for the detailed definition of VS in urban areas: 13th World Conference on Earthquake Engineering, 2694.
  • Nunziata, C., G. Costa, M. Natale, and G. F. Panza, 1999, Seismic characterization of the shore sand at Catania: Journal of Seismology, 3, 253–264, doi: 10.1023/A:1009861824955.DXUEF71383-4649
  • Nunziata, C., G. De Nisco, and G. F. Panza, 2009, S-waves profiles from noise cross correlation at small scale: Engineering Geology, 105, 161–170, doi: 10.1016/j.enggeo.2009.01.005.EGGOAO0013-7952
  • O’Connell, D. R. H., and J. P. Turner, 2011, Interferometric multichannel analysis of surface waves (IMASW): Bulletin of the Seismological Society of America, 101, 2122–2141, doi: 10.1785/0120100230.BSSAAP0037-1106
  • Ohori, M., A. Nobata, and K. Wakamatsu, 2002, A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays: Bulletin of the Seismological Society of America, 92, 2323–2332, doi: 10.1785/0119980109.BSSAAP0037-1106
  • Okada, H., 2003, The microtremor survey method: SEG.
  • O’Neill, A., M. Dentith, and R. List, 2003, Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications: Exploration Geophysics, 34, 158–173, doi: 10.1071/EG03158.
  • O‘Neill, A., T. Matsuoka, and K. Tsukada, 2004, Some pitfalls associated with dominant higher-mode surface-wave inversion: Near Surface 2004-10th EAGE European Meeting of Environmental and Engineering Geophysics, cp-10, doi: 10.3997/2214-4609-pdb.10.B028.
  • Palmer, D., 2010a, Are refraction attributes more useful than refraction tomography? First Break, 28, 43–52, doi: 10.3997/1365-2397.2010019.
  • Palmer, D., 2010b, Non-uniqueness with refraction inversion — The Mt Bulga shear zone: Geophysical Prospecting, 58, 561–575, doi: 10.1111/j.1365-2478.2009.00855.x.GPPRAR0016-8025
  • Panza, G. F., 1985, Synthetic seismograms-the Rayleigh waves modal summation: Journal of Geophysics, 58, 125–145.JGEOD40340-062X
  • Panza, G. F., 1989, Attenuation measurements by multimode synthetic seismograms, in R. CassinisG. NoletG. F. Panza, eds., Digital seismology and fine modeling of the lithosphere: Springer, 79–115, doi: 10.1007/978-1-4899-6759-6_5.
  • Park, C. B., R. D. Miller, and J. Xia, 1998, Imaging dispersion curves of surface waves on multi-channel record: 68th Annual International Meeting, SEG, Expanded Abstracts, 1377–1380, doi: 10.1190/1.1820161.
  • Pegah, E., and H. Liu, 2016, Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: A case study: Engineering Geology, 208, 100–113, doi: 10.1016/j.enggeo.2016.04.021.EGGOAO0013-7952
  • Picozzi, M., and D. Albarello, 2007, Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves: Geophysical Journal International, 169, 189–200, doi: 10.1111/j.1365-246X.2006.03282.x.GJINEA0956-540X
  • Poggi, V., and D. Fäh, 2010, Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations: Geophysical Journal International, 180, 251–267, doi: 10.1111/j.1365-246X.2009.04402.x.GJINEA0956-540X
  • Poli, P., H. A. Pedersen, M. Campillo, and P. W. Group, 2013, Noise directivity and group velocity tomography in a region with small velocity contrasts: The northern Baltic shield: Geophysical Journal International, 192, 413–424, doi: 10.1093/gji/ggs034.GJINEA0956-540X
  • Pontevivo, A., and G. F. Panza, 2002, Group velocity tomography and regionalization in Italy and bordering areas: Physics of the Earth and Planetary Interiors, 134, 1–15, doi: 10.1016/S0031-9201(02)00079-1.PEPIAM0031-9201
  • Pugin, A.-M., K. Brewer, T. Cartwright, S. E. Pullan, D. Perret, H. Crow, and J. A. Hunter, 2013, Near surface S-wave seismic reflection profiling — New approaches and insights: First Break, 31, 49–60, doi: 10.3997/1365-2397.2013005.
  • Pulido, N., S. Senna, T. Sekiguchi, H. Yamanaka, J. Eraso, N. Perico, J. C. Reyes, H. Garcia, P. Pedraza, and C. Dimate, 2017, Estimation of velocity model of Bogota basin (Colombia) based on microtremors array measurements: 16th World Conference on Earthquake Engineering.
  • Qorbani, E., D. Zigone, M. R. Handy, and G. Bokelmann, and AlpArray-EASI Working Group, 2020, Crustal structures beneath the Eastern and Southern Alps from ambient noise tomography: Solid Earth, 11, 1947–1968, doi: 10.5194/se-11-1947-2020.
  • Regione Autonoma Friuli Venezia Giulia, 2018, Piano Regionale di Tutela delle Acque — Analisi Conoscitiva (in Italian), https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/ambiente-territorio/pianificazione-gestione-territorio/FOGLIA20/FOGLIA22/allegati/2_-_Analisi_conoscitiva.pdf, accessed February 2024.
  • Ritzwoller, M. H., and A. L. Levshin, 1998, Eurasian surface wave tomography: Group velocities: Journal of Geophysical Research: Solid Earth, 103, 4839–4878, doi: 10.1029/97JB02622.
  • Ritzwoller, M. H., and A. L. Levshin, 2002, Estimating shallow shear velocities with marine multicomponent seismic data: Geophysics, 67, 1991–2004, doi: 10.1190/1.1527099.GPYSA70016-8033
  • Rodriguez-Castellanos, A., F. J. Sánchez-Sesma, F. Luzon, and R. Martin, 2006, Multiple scattering of elastic waves by subsurface fractures and cavities: Bulletin of the Seismological Society of America, 96, 1359–1374, doi: 10.1785/0120040138.BSSAAP0037-1106
  • Russell, J. B., J. B. Gaherty, P. P. Lin, D. Lizarralde, J. A. Collins, G. Hirth, and R. L. Evans, 2019, High-resolution constraints on Pacific upper mantle petrofabric inferred from surface-wave anisotropy: Journal of Geophysical Research: Solid Earth, 124, 631–657, doi: 10.1029/2018JB016598.
  • Safani, J., A. O’Neill, and T. Matsuoka, 2006, Full SH-wavefield modelling and multiple-mode Love wave inversion: Exploration Geophysics, 37, 307–321, doi: 10.1071/EG06307.
  • Safani, J., A. O’Neill, T. Matsuoka, and Y. Sanada, 2005, Applications of Love wave dispersion for improved shear-wave velocity imaging: Journal of Environmental & Engineering Geophysics, 10, 135–150, doi: 10.2113/JEEG10.2.135.
  • Salem, H. S., 2000, The compressional to shear-wave velocity ratio for surface soils and shallow sediments: European Journal of Environmental and Engineering Geophysics, 5, 3–14.
  • Scales, J. A., M. L. Smith, and S. Treitel, 1994, Introductory geophysical inverse theory: Citeseer.
  • Schumann, K., M. Stipp, J. H. Behrmann, D. Klaeschen, and D. Schulte-Kortnack, 2014, P and S wave velocity measurements of water-rich sediments from the Nankai Trough, Japan: Journal of Geophysical Research: Solid Earth, 119, 787–805, doi: 10.1002/2013JB010290.
  • Snieder, R., 2004, Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase: Physical Review E, 69, 46610, doi: 10.1103/PhysRevE.69.046610.PLEEE81539-3755
  • Tada, T., I. Cho, and Y. Shinozaki, 2007, Beyond the SPAC method: Exploiting the wealth of circular-array methods for microtremor exploration: Bulletin of the Seismological Society of America, 97, 2080–2095, doi: 10.1785/0120070058.BSSAAP0037-1106
  • Tada, T., I. Cho, and Y. Shinozaki, 2010, Analysis of Love-wave components in microtremors: Joint Conference Proceedings, 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE), Center for Urban Earthquake Engineering, Tokyo Institute of Technology, 115–124.
  • Takahashi, T., 1955, Analysis of the dispersion curves of Love-waves: Bulletin of the Earthquake Research Institute, 33, 287–295.TDJKAZ0040-8972
  • Tokimatsu, K., S. Tamura, and H. Kojima, 1992, Effects of multiple modes on Rayleigh wave dispersion characteristics: Journal of Geotechnical Engineering, 118, 1529–1543, doi: 10.1061/(ASCE)0733-9410(1992)118:10(1529).JGENDZ0733-9410
  • Trampert, J., and J. H. Woodhouse, 1995, Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds: Geophysical Journal International, 122, 675–690, doi: 10.1111/j.1365-246X.1995.tb07019.x.GJINEA0956-540X
  • Van Dalen, K. N., T. D. Mikesell, E. N. Ruigrok, and K. Wapenaar, 2015, Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution: Journal of Geophysical Research: Solid Earth, 120, 944–961, doi: 10.1002/2014JB011262.
  • Van Veldhuizen, D. A., and G. B. Lamont, 1998, Evolutionary computation and convergence to a Pareto front: Late Breaking Papers at the Genetic Programming 1998 Conference, 221–228.
  • Wapenaar, K., J. Van Der Neut, E. Ruigrok, D. Draganov, J. Hunziker, E. Slob, J. Thorbecke, and R. Snieder, 2011, Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison: Geophysical Journal International, 185, 1335–1364, doi: 10.1111/j.1365-246X.2011.05007.x.GJINEA0956-540X
  • Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.GPYSA70016-8033
  • Yapo, P. O., H. V. Gupta, and S. Sorooshian, 1998, Multi-objective global optimization for hydrologic models: Journal of Hydrology, 204, 83–97, doi: 10.1016/S0022-1694(97)00107-8.JHYDA70022-1694
  • Zhang, S. X., and L. S. Chan, 2003, Possible effects of misidentified mode number on Rayleigh wave inversion: Journal of Applied Geophysics, 53, 17–29, doi: 10.1016/S0926-9851(03)00014-4.JAGPEA0926-9851
  • Zhou, H.-W., 2014, Practical seismic data analysis: Cambridge University Press.
  • Zigone, D., Y. Ben-Zion, M. Campillo, and P. Roux, 2015, Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love waves: Pure and Applied Geophysics, 172, 1007–1032, doi: 10.1007/s00024-014-0872-1.PAGYAV0033-4553
  • Zimmer, M. A., 2003, Seismic velocities in unconsolidated sands: Measurements of pressure, sorting, and compaction effects: Ph.D. dissertation, Stanford University, https://pangea.stanford.edu/research/srb/docs/theses/SRB_95_NOV03_Zimmer.pdf (accessed February 2024).
  • Zitzler, E., and L. Thiele, 1999, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach: IEEE Transactions on Evolutionary Computation, 3, 257–271, doi: 10.1109/4235.797969.ITEVF51089-778X