This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


A study of time spectrum identification of induced polarization field based on Weibull distribution function


Identification of time spectrum is one of the core issues of the time-domain induced polarization (IP) method, which can be considered as one of the bases for distinguishing various polarized rocks. Fitting the IP data based on the spectrum forward model and obtaining optimal solution of the model parameters is a key step in spectrum identification. However, the suitable forward model should consider the observation conditions, such as the charging time and the time window. The time spectrum identification may be difficult to implement stably due to the lack of objective reference for the optimal solution. Therefore, our purpose is to improve the forward model and implement the spectrum identification for IP data. First, using the Weibull (WB) distribution function as the basis, a time spectrum forward model considering the charging time and observation time window is provided according to the typical measurement mode. Then, based on the WB spectrum model and Barzilai-Borwein gradient optimization, a method for solution of apparent spectral model parameters for spectrum identification is developed. Finally, this method is used to process the IP data from a mine in which the anomalies related to ore-bearing beds are identified based on the processing results. Results obtained demonstrate that the spectrum forward model based on the WB function is feasible in describing the IP data. The limited charging time and a wide observed time window should be considered to realize accurate simulations and description of the time-domain IP data. The essence of the time spectrum identification is to comprehensively reflect the time-varying state of the whole time channel through the spectral model parameters, whereas the decay field ratio of the adjacent time channel can be used as an objective reference. The parameters of the spectrum model characterizing the time-varying state are independent of polarization and resistivity and thus can be directly used for identification of IP anomalies.


  • Aguilef, S., J. A. Vargas, and G. Yanez, 2018, Relationship between bulk mineralogy and induced polarisation responses in iron oxide-copper-gold and porphyry copper mineralisation, northern Chile: Exploration Geophysics, 48, 353–362, doi: 10.1071/EG15077.CrossrefWeb of ScienceGoogle Scholar
  • Barfod, A. S., L. Levy, and J. J. Larsen, 2020, Automatic processing of time domain induced polarization data using supervised artificial neural networks: Geophysical Journal International, 224, 312–325, doi: 10.1093/gji/ggaa460.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Belliveau, P., and E. Haber, 2018, Coupled simulation of electromagnetic induction and induced polarization effects using stretched exponential relaxation: Geophysics, 83, no. 2, WB109–WB121, doi: 10.1190/geo2017-0494.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bertin, J., and J. Loeb, 1976, Experimental and theoretical aspects of induced polarization: Gebruder Borntraeger.Google Scholar
  • Bording, T., A. K. Kühl, G. Fiandaca, J. F. Christensen, A. V. Christiansen, and E. Auken, 2021, Cross-borehole geoelectrical time-lapse monitoring of in situ chemical oxidation and permeability estimation through induced polarization: Near Surface Geophysics, 19, 43–58, doi: 10.1002/nsg.12131.CrossrefWeb of ScienceGoogle Scholar
  • Cross, B., and C. L. Kirkland, 2021, Petrological control on chargeability with implications for induced polarization surveys: Journal of Applied Geophysics, 188, 104308, doi: 10.1016/j.jappgeo.2021.104308.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Duvillard, P. A., A. Revil, Y. Qi, A. Soueid Ahmed, A. Coperey, and L. Ravanel, 2018, Three-dimensional electrical conductivity and induced polarization tomography of a rock glacier: Journal of Geophysical Research: Solid Earth, 123, 9528–9554, doi: 10.1029/2018JB015965.CrossrefWeb of ScienceGoogle Scholar
  • Eiselt, H. A., and C. Sandblom, 2019, Nonlinear optimization: Springer Science & Business Media.CrossrefGoogle Scholar
  • Fiandaca, G., E. Auken, A. V. Christiansen, and A. Gazoty, 2012, Time domain induced polarization: Full-decay forward modeling and 1D laterally constrained inversion of Cole-Cole parameters: Geophysics, 77, no. 3, E213–E225, doi: 10.1190/geo2011-0217.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fiandaca, G., L. M. Madsen, and P. K. Maurya, 2018, Re-parameterisations of the Cole-Cole model for improved spectral inversion of induced polarization data: Near Surface Geophysics, 16, 385–399, doi: 10.3997/1873-0604.2017065.CrossrefWeb of ScienceGoogle Scholar
  • Gordon, O., M. Sugand, K. Keating, A. Binley, and L. Slater, 2019, Effect of clay content and distribution on hydraulic and geophysical properties of synthetic sand-clay mixtures: Geophysics, 84, no. 4, E239–E253, doi: 10.1190/geo2018-0387.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gurin, G., Y. Ilyin, S. Nilov, D. Ivanov, E. Kozlov, and K. Titov, 2018, Induced polarization of rocks containing pyrite: Interpretation based on X-ray computed tomography: Journal of Applied Geophysics, 154, 50–63, doi: 10.1016/j.jappgeo.2018.04.019.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Gurin, G., K. Titov, and Y. Ilyin, 2019, Induced polarization of rocks containing metallic particles: Evidence of passivation effect: Geophysical Research Letters, 46, 670–677, doi: 10.1029/2018GL080107.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Johansson, S., P. Hedblom, and T. Dahlin, 2020, Spectral analysis of time domain induced polarization waveforms: Journal of Applied Geophysics, 177, 104037, doi: 10.1016/j.jappgeo.2020.104037.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Kessouri, P., A. Furman, J. A. Huisman, T. Martin, A. Mellage, D. Ntarlagiannis, M. Bücker, S. Ehosioke, P. Fernandez, A. Flores-Orozco, A. Kemna, F. Nguyen, T. Pilawski, S. Saneiyan, M. Schmutz, N. Schwartz, M. Weigand, Y. Wu, C. Zhang, and E. Placencia-Gomez, 2019, Induced polarization applied to biogeophysics: Recent advances and future prospects: Near Surface Geophysics, 17, 595–621, doi: 10.1002/nsg.12072.CrossrefWeb of ScienceGoogle Scholar
  • Kozhevnikov, N. O., and E. Y. Antonov, 2018, Current and voltage source induced polarization transients: A comparative consideration: Geophysical Prospecting, 66, 422–431, doi: 10.1111/1365-2478.12521.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Latt, K. M. M., and P. H. Giao, 2017, Prediction of permeability of cement admixed soft clay using resistivity and time-domain IP measurements: Journal of Applied Geophysics, 137, 92–103, doi: 10.1016/j.jappgeo.2016.12.015.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Lopez, A., A. Tejero, L. Hernandez, and R. Chavez, 2019, Induced polarization and resistivity of second potential differences (SPD) with focused sources applied to environmental problems: Journal of Environmental & Engineering Geophysics, 24, 49–61, doi: 10.2113/JEEG24.1.49.AbstractWeb of ScienceGoogle Scholar
  • Madsen, L. M., G. Fiandaca, and E. Auken, 2020, 3-D time-domain spectral inversion of resistivity and full-decay induced polarization data — Full solution of Poisson’s equation and modelling of the current waveform: Geophysical Journal International, 223, 2101–2116, doi: 10.1093/gji/ggaa443.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Madsen, L. M., G. Fiandaca, A. V. Christiansen, and E. Auken, 2018, Resolution of well-known resistivity equivalences by inclusion of time-domain induced polarization data: Geophysics, 83, no. 1, E47–E54, doi: 10.1190/geo2017-0009.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Martin, T., K. Titov, A. Tarasov, and A. Weller, 2021, Spectral induced polarization: Frequency domain versus time domain laboratory data: Geophysical Journal International, 225, 1982–2000, doi: 10.1093/gji/ggab071.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Maurya, P. K., G. Fiandaca, A. V. Christiansen, and E. Auken, 2018, Field-scale comparison of frequency- and time-domain spectral induced polarization: Geophysical Journal International, 214, 1441–1466, doi: 10.1093/gji/ggy218.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Meng, Q. X., X. Y. Hu, H. P. Pan, H. L. Ma, and M. Luo, 2020, Time-domain induced polarization forward modeling and an apparent spectral parameter solution based on the Weibull growth model: Geophysics, 85, no. 5, D145–D155, doi: 10.1190/geo2018-0693.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mertler, C., and R. Reinhart, 2016, Advanced and multivariate statistical methods, 6th ed.: Routledge Press.CrossrefGoogle Scholar
  • Mostafaei, K., and H. Ramazi, 2019, Investigating the applicability of induced polarization method in ore modelling and drilling optimization: A case study from Abassabad, Iran: Near Surface Geophysics, 17, 637–652, doi: 10.1002/nsg.12055.CrossrefWeb of ScienceGoogle Scholar
  • Olsson, P. I., T. Dahlin, G. Fiandaca, and E. Auken, 2015, Measuring time-domain spectral induced polarization in the on-time: Decreasing acquisition time and increasing signal-to-noise ratio: Journal of Applied Geophysics, 123, 316–321, doi: 10.1016/j.jappgeo.2015.08.009.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Olsson, P. I., G. Fiandaca, P. K. Maurya, T. Dahlin, and E. Auken, 2019, Effect of current pulse duration in recovering quantitative induced polarization models from time-domain full-response and integral chargeability data: Geophysical Journal International, 218, 1739–1747, doi: 10.1093/gji/ggz236.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Panik, M. J., 2014, Growth curve modeling: Theory and applications: John Wiley & Sons.CrossrefGoogle Scholar
  • Pelton, W. H., S. H. Ward, P. G. Hallof, W. R. Sill, and P. H. Nelson, 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43, 588–609, doi: 10.1190/1.1440839.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Revil, A., Y. Qi, A. Ghorbani, A. Coperey, A. Soueid Ahmed, A. Finizola, and T. Ricci, 2019, Induced polarization of volcanic rocks. 3. Imaging clay cap properties in geothermal fields: Geophysical Journal International, 218, 1398–1427, doi: 10.1093/gji/ggz207.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Rucker, D. F., C. H. Tsai, K. C. Carroll, S. Brooks, E. M. Pierce, A. Ulery, and C. Derolph, 2021, Bedrock architecture, soil texture, and hyporheic zone characterization combining electrical resistivity and induced polarization imaging: Journal of Applied Geophysics, 188, 104306, doi: 10.1016/j.jappgeo.2021.104306.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Sumner, J. S., 1976, Principles of induced polarization for geophysical exploration: Elsevier Science.Google Scholar
  • Wait, J. R., 1959, Overvoltage research and geophysical applications: Pergamon Press.CrossrefGoogle Scholar
  • Weller, A., and L. Slater, 2019, Permeability estimation from induced polarization: An evaluation of geophysical length scales using an effective hydraulic radius concept: Near Surface Geophysics, 17, 581–594, doi: 10.1002/nsg.12071.CrossrefWeb of ScienceGoogle Scholar
  • Zarif, F., P. Kessouri, and L. Slater, 2017, Recommendations for field-scale induced polarization (IP) data acquisition and interpretation: Journal of Environmental and Engineering Geophysics, 22, 395–410, doi: 10.2113/JEEG22.4.395.AbstractWeb of ScienceGoogle Scholar