This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Distributed acoustic sensing/surface orbital vibrator: Rotary seismic sources with fiber-optic sensing facilitates autonomous permanent reservoir monitoring

Authors:

With new developments of fiber-optic sensing and rotary sources, continuous active seismic monitoring for onshore applications has now the opportunity to be fully realized and applied to enhance subsurface resource extraction and use. To date, conventional seismic monitoring deployments have primarily consisted of receiver arrays, either fixed or not, with periodic data acquisition campaigns using temporarily deployed sources, resulting in time-lapse data with poor temporal resolution. Only a few niche efforts have demonstrated continuous acquisition using fixed source-receiver networks. We have evaluated the initial results of a network of fixed rotary seismic sources, referred to as surface orbital vibrators (SOVs), coupled with a permanent distributed acoustic sensing (DAS) network at the CO2CRC Otway Field Site. Although rotary seismic sources are not new, our development of the SOV focused on simplifying the cost and complexity of the source hardware while delivering broad frequency spectrum of the source signal. The upgraded hardware is aligned with a robust methodology for autonomous operation and data processing. At the Otway Site, we deployed SOVs at nine locations, monitoring seismic response in seven DAS instrumented wells. Baseline operation of the DAS/SOV sensor array and source system demonstrates its capability with near offsets attaining a signal-to-noise ratio approaching 100 dB with a normalized root mean square of 10%. Furthermore, analyses of traveltime repeatability indicate that the DAS/SOV system can deliver time resolution of ±500 μs.

REFERENCES

  • Ajo-Franklin, J., S. Dou, T. Daley, B. Freifeld, M. Robertson, C. Ulrich, T. Wood, I. Eckblaw, N. Lindsey, E. Martin, and A. Wagner, 2017, Time-lapse surface wave monitoring of permafrost thaw using distributed acoustic sensing and a permanent automated seismic source: 87th Annual International Meeting, SEG, Expanded Abstracts, 5223–5227, doi: 10.1190/segam2017-17774027.1.AbstractGoogle Scholar
  • Ajo-Franklin, J. B., S. Dou, N. J. Lindsey, I. Monga, C. Tracy, M. Robertson, V. Rodriguez Tribaldos, C. Ulrich, B. Freifeld, T. Daley, and X. Li, 2019, Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection: Scientific Reports, 9, 1–14, doi: 10.1038/s41598-018-36675-8.CrossrefWeb of ScienceGoogle Scholar
  • Berron, C., L. Michou, B. De Cacqueray, F. Duret, J. Cotton, and E. Forgues, 2015, Permanent, continuous & unmanned 4D seismic monitoring: Peace River case study: 85th Annual International Meeting, SEG, Expanded Abstracts, 5419–5423, doi: 10.1190/segam2015-5813292.1.AbstractGoogle Scholar
  • Cheng, F., J. Correa, S. Dou, B. Freifeld, T. Wood, K. Nihei, D. Guerra, J. Birkholzer, B. Chi, and J. Ajo-Franklin, 2021, Testing of a permanent orbital surface source and distributed acoustic sensing for monitoring of unconventional reservoirs: Preliminary results from the Eagle Ford Shale: Geophysics, 86, no. 2, P1–P12, doi: 10.1190/geo2020-0403.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Correa, J., A. Egorov, K. Tertyshnikov, A. Bona, R. Pevzner, T. Dean, B. Freifeld, and S. Marshall, 2017, Analysis of signal to noise and directivity characteristics of das VSP at near and far offsets — A CO2CRC Otway Project data example: The Leading Edge, 36, 994a1–994a7, doi: 10.1190/tle36120994a1.1.AbstractGoogle Scholar
  • Correa, J., B. Freifeld, J. Ajo-Franklin, S. Dou, M. Commer, T. Daley, M. Robertson, T. Wood, and S. McDonald, 2020, Fibre-optics sensing and permanent sources for seismic monitoring of a large-scale CCS site in Decatur, Illinois: Preliminary results and lessons learnt: EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, 1–5, doi: 10.3997/2214-4609.202070027.CrossrefGoogle Scholar
  • Daley, T. M., and D. Cox, 2001, Orbital vibrator seismic source for simultaneous P- and S-wave crosswell acquisition: Geophysics, 66, 1471–1480, doi: 10.1190/1.1487092.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Daley, T. M., D. Miller, B. M. Freifeld, and K. Dodds, 2014, Results of field testing of simultaneous DAS and geophone VSP: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, cp-401-00137, doi: 10.3997/2214-4609.20140619.CrossrefGoogle Scholar
  • Dou, S., J. B. Ajo-Franklin, T. M. Daley, M. Robertson, T. Wood, B. M. Freifeld, R. Pevzner, J. Correa, K. Tertyshnikov, M. Urosevic, and B. Gurevich, 2016, Surface orbital vibrator (SOV) and fiber-optic DAS: Field demonstration of economical, continuous land seismic time-lapse monitoring from the Australian CO2CRC Otway site: 86th Annual International Meeting, SEG, Expanded Abstracts, 5552–5556, doi: 10.1190/segam2016-13974161.1.AbstractGoogle Scholar
  • Ikeda, T., and T. Tsuji, 2017, Robust subsurface monitoring using a continuous and controlled seismic source: Energy Procedia, 114, 3956–3960, doi: 10.1016/j.egypro.2017.03.1527.1876-6102CrossrefGoogle Scholar
  • Isaenkov, R., R. Pevzner, S. Glubokovskikh, S. Yavuz, A. Yurikov, K. Tertyshnikov, B. Gurevich, J. Correa, T. Wood, B. Freifeld, M. Mondanos, S. Nikolov, and P. Barraclough, 2021, An automated system for continuous monitoring of CO2 geosequestration using multi-well offset VSP with permanent seismic sources and receivers: Stage 3 of the CO2CRC Otway Project: International Journal of Greenhouse Gas Control, 108, 103317, doi: 10.1016/j.ijggc.2021.103317.1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Jervis, M., A. Bakulin, R. Burnstad, C. Berron, and E. Forgues, 2012, Suitability of vibrators for time-lapse monitoring in the Middle East: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-0948.1.AbstractGoogle Scholar
  • Johnston, D. H., 2013, Repeatability and 4D seismic acquisition, in Practical applications of time-lapse seismic data: SEG, 73–102, doi: https://doi.org/10.1190/1.9781560803126.ch5.AbstractGoogle Scholar
  • Kasahara, J., K. Aldamegh, G. T. Alanezi, K. Alyousef, F. Almalki, O. Lafouza, Y. Hasada, and K. Murase, 2015, Simultaneous time-lapse data acquisition of active and passive seismic sources at Al Wasse water pumping field in Saudi Arabia: Energy Procedia, 76, 512–518, doi: 10.1016/j.egypro.2015.07.901.1876-6102CrossrefGoogle Scholar
  • Kasahara, J., and Y. Hasada, 2017, Time lapse approach to monitoring oil, gas, and CO2 storage by seismic methods: Elsevier.Google Scholar
  • Kragh, E., and P. Christie, 2002, Seismic repeatability, normalized RMS, and predictability: The Leading Edge, 21, 640–647, doi: 10.1190/1.1497316.AbstractGoogle Scholar
  • Kuvshinov, B. N., 2016, Interaction of helically wound fibre-optic cables with plane seismic waves: Geophysical Prospecting, 64, 671–688, doi: 10.1111/1365-2478.12303.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Lopez, J. L., P. B. Wills, J. R. La Follett, T. B. Barker, Y. Xue, J. K. Przybysz-Jarnut, J. H. H. M. Potters, M. Van Lokven, D. R. Brouwer, and C. Berron, 2015, Real-time seismic surveillance of thermal EOR at Peace River: Society of Petroleum Engineers — SPE Canada Heavy Oil Technical Conference, 1231–1241.CrossrefGoogle Scholar
  • Lumley, D. E., 2001, Time-lapse seismic reservoir monitoring: Geophysics, 66, 50–53, doi: 10.1190/1.1444921.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Meunier, J., 2011, PRM techniques can significantly increase time lapse sensitivity: EAGE Workshop on Permanent Reservoir Monitoring: Using Seismic Data, cp-220-00010.CrossrefGoogle Scholar
  • Nakatsukasa, M., H. Ban, A. Kato, N. Shimoda, D. White, and E. Nickel, 2018, VSP acquisition with combined fiber-optic DAS and permanent seismic source ACROSS for permanent reservoir monitoring at the Aquistore site: 88th Annual International Meeting, SEG, Expanded Abstracts, 5273–5277, doi: 10.1190/segam2018-2995929.1.AbstractGoogle Scholar
  • Nakatsukasa, M., H. Ban, M. Takanashi, A. Kato, K. Worth, and D. White, 2017, Repeatability of a rotary seismic source at the Aquistore CCS site: 87th Annual International Meeting, SEG, Expanded Abstracts, 5911–5916, doi: 10.1190/segam2017-17780266.1.AbstractGoogle Scholar
  • Naldrett, G., T. Parker, S. Shatalin, M. Mondanos, and M. Farhadiroushan, 2020, High-resolution Carina distributed acoustic fibreoptic sensor for permanent reservoir monitoring and extending the reach into subsea fields: First Break, 38, 71–76, doi: 10.3997/1365-2397.fb2020012.CrossrefGoogle Scholar
  • Parker, T., and S. V. Shatalin, 2014, Distributed acoustic sensing — A new tool for seismic applications: First Break, 32, 61–69, doi: 10.3997/1365-2397.2013034.CrossrefGoogle Scholar
  • Pevzner, R., V. Shulakova, A. Kepic, and M. Urosevic, 2011, Repeatability analysis of land time-lapse seismic data: CO2CRC Otway pilot project case study: Geophysical Prospecting, 59, 66–77, doi: 10.1111/j.1365-2478.2010.00907.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Pevzner, R., M. Urosevic, D. Popik, V. Shulakova, K. Tertyshnikov, E. Caspari, J. Correa, T. Dance, A. Kepic, S. Glubokovskikh, S. Ziramov, B. Gurevich, R. Singh, M. Raab, M. Watson, T. Daley, M. Robertson, and B. Freifeld, 2017, 4D surface seismic tracks small supercritical CO2 injection into the subsurface: CO2CRC Otway Project: International Journal of Greenhouse Gas Control, 63, 150–157, doi: 10.1016/j.ijggc.2017.05.008.1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Pevzner, R., M. Urosevic, K. Tertyshnikov, H. AlNasser, E. Caspari, J. Correa, T. Daley, T. Dance, B. Freifeld, S. Glubokovskikh, A. Greenwood, A. Kepic, D. Popik, S. Popik, M. Raab, M. Robertson, V. Shulakova, R. Singh, M. Watson, S. Yavuz, S. Ziramov, and B. Gurevich, 2019, Active surface and borehole seismic monitoring of a small supercritical CO2 injection into the subsurface: Experience from the CO2CRC Otway Project, in J. KasaharaM. S. ZhdanovH. Mikada, eds., Active geophysical monitoring: Elsevier, 497–522, doi: https://doi.org/10.1016/B978-0-08-102684-7.00024-8.Google Scholar
  • Stanton, A. N., 1931, Method of seismological research: U.S. Patent 1,790,080.Google Scholar
  • Wang, X., B. Xue, R. Cui, G. Gu, C. Peng, Y. Zheng, and J. Yang, 2020, A method of phase identification for seismic data acquired with the controlled accurate seismic source (CASS): Geophysical Journal International, 222, 54–68, doi: 10.1093/gji/ggaa108.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Yavuz, S., J. Correa, R. Pevzner, B. Freifeld, T. Wood, K. Tertyshnikov, S. Popik, and M. Robertson, 2019, Assessment of the permanent seismic sources for borehole seismic monitoring applications: CO2CRC Otway Project: Australian Society of Exploration Geoscience (ASEG), Extended Abstracts, 2019, 2019 - Issue 1: 2nd Australian Exploration Geoscience Conference, 1–5, doi: https://doi.org/10.1080/22020586.2019.12073157.CrossrefGoogle Scholar
  • Zwartjes, P., A. Mateeva, M. Tatanova, D. Chalenski, Z. Yang, J. Lopez, K. De Vos, and H. Potters, 2017, 4D DAS VSP in deepwater — Proof of concept and next steps: 87th Annual International Meeting, SEG, Expanded Abstracts, 5802–5807, doi: 10.1190/segam2017-17633006.1.AbstractGoogle Scholar