This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


In microseismic monitoring, obtaining reliable information about event properties, such as the location, origin time, and moment-tensor components, is critical for evaluating the success of fluid-injection programs. Elastic wavefield-based migration approaches can robustly image microseismic sources by extrapolating data through an earth model and evaluating an imaging condition. The success of these imaging methods, though, primarily depends on the elastic model’s accuracy. The previously developed extended PS energy imaging condition can provide valuable information about the accuracy of the elastic model parameters including vertical P- and S-wave velocities as well as anisotropy coefficients. Using the SEG advanced modeling Barrett Unconventional model, we have assessed the influence of errors in the anisotropy parameters by conducting a sensitivity analysis in three types of 3D models: transversely isotropic with a vertical symmetry axis, transversely isotropic with a horizontal symmetry axis, and orthorhombic media. Our analysis on zero-lag and extended PS energy images computed with perturbed anisotropy models shows that event images exhibit different moveout patterns of misfocused energy with respect to the distorted Thomsen parameters ϵ and δ; however, for this model, the γ parameters have almost no influence on images regardless of the applied perturbations, which are reflected in the minimal traveltime differences in the data. The dependence of microseismic source images on these parameters provides essential insights into anisotropic model accuracy, and it suggests that misfocused energy on extended image gathers may be used as a criterion for updating earth models through anisotropic elastic image-domain inversion.


  • Alford, R. M., 1986, Shear data in the presence of azimuthal anisotropy: 56th Annual International Meeting, SEG, Expanded Abstracts, 476–479, doi: 10.1190/1.1893036.AbstractGoogle Scholar
  • Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550–1566, doi: 10.1190/1.1443888.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Artman, B., I. Podladtchikov, and B. Witten, 2010, Source location using time-reverse imaging: Geophysical Prospecting, 58, 861–873, doi: 10.1111/j.1365-2478.2010.00911.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Backus, G., and M. Mulcahy, 1976a, Moment tensors and other phenomenological descriptions of seismic sources — Part 1: Continuous displacements: Geophysical Journal International, 46, 341–361, doi: 10.1111/j.1365-246X.1976.tb04162.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Backus, G., and M. Mulcahy, 1976b, Moment tensors and other phenomenological descriptions of seismic sources — Part 2: Discontinuous displacements: Geophysical Journal International, 47, 301–329, doi: 10.1111/j.1365-246X.1976.tb01275.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Ben-Menahem, A., and S. J. Singh, 1981, Seismic waves and sources: Springer-Verlag.CrossrefGoogle Scholar
  • Crampin, S., 1985, Evaluation of anisotropy by shear-wave splitting: Geophysics, 50, 142–152, doi: 10.1190/1.1441824.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gajewski, D., and E. Tessmer, 2005, Reverse modelling for seismic event characterization: Geophysical Journal International, 163, 276–284, doi: 10.1111/j.1365-246X.2005.02732.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Grechka, V., P. Singh, and I. Das, 2011, Estimation of effective anisotropy simultaneously with locations of microseismic events: Geophysics, 76, no. 6, WC141–WC153, doi: 10.1190/geo2010-0409.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grechka, V., and S. Yaskevich, 2014, Azimuthal anisotropy in microseismic monitoring: A Bakken case study: Geophysics, 79, no. 1, KS1–KS12, doi: 10.1190/geo2013-0211.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Houseknecht, D. W., W. A. Rouse, S. T. Paxton, J. C. Mars, and B. Fulk, 2014, Upper Devonian-Mississippian stratigraphic framework of the Arkoma Basin and distribution of potential source-rock facies in the Woodford-Chattanooga and Fayetteville-Caney shale-gas systems: AAPG Bulletin, 98, 1739–1759, doi: 10.1306/03031413025.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Jarillo Michel, O., and I. Tsvankin, 2017, Waveform inversion for microseismic velocity analysis and event location in VTI media: Geophysics, 82, no. 4, WA95–WA103, doi: 10.1190/geo2016-0651.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, V., I. Tsvankin, and T. Alkhalifah, 2016, Analysis of RTM extended images for VTI media: Geophysics, 81, no. 3, S139–S150, doi: 10.1190/geo2015-0384.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Maxwell, S., L. Bennett, M. Jones, and J. Walsh, 2010, Anisotropic velocity modeling for microseismic processing — Part 1: Impact of velocity model uncertainty: 80th Annual International Meeting, SEG, Expanded Abstracts, 2130–2134, doi: 10.1190/1.3513267.AbstractGoogle Scholar
  • Moczo, P., J. Kristek, and M. Gális, 2014, The finite-difference modelling of earthquake motions: Waves and ruptures: Cambridge University Press.CrossrefGoogle Scholar
  • Nakata, N., and G. C. Beroza, 2016, Reverse time migration for microseismic sources using the geometric mean as an imaging condition: Geophysics, 81, no. 2, KS51–KS60, doi: 10.1190/geo2015-0278.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Oren, C., and J. Shragge, 2019, 3D anisotropic elastic time-reverse imaging of surface-recorded microseismic data: 89th Annual International Meeting, SEG, Expanded Abstracts, 3076–3080, doi: 10.1190/segam2019-3215476.1.AbstractGoogle Scholar
  • Oren, C., and J. Shragge, 2021, PS energy imaging condition for microseismic data — Part 1: Theory and applications in 3D isotropic media: Geophysics, 86, this issue, doi: 10.1190/geo2020-0476.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Regone, C., J. Stefani, P. Wang, C. Gerea, G. Gonzalez, and M. Oristaglio, 2017, Geologic model building in SEAM Phase II-Land seismic challenges: The Leading Edge, 36, 738–749, doi: 10.1190/tle36090738.1.AbstractGoogle Scholar
  • Rocha, D., P. Sava, J. Shragge, and B. Witten, 2019, 3D passive wavefield imaging using the energy norm: Geophysics, 84, no. 2, KS13–KS27, doi: 10.1190/geo2018-0251.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Saenger, E. H., 2011, Time reverse characterization of sources in heterogeneous media: NDT and E International, 44, 751–759, doi: 10.1016/j.ndteint.2011.07.011.CrossrefWeb of ScienceGoogle Scholar
  • Sava, P., and T. Alkhalifah, 2015, Anisotropy signature in reverse-time migration extended images: Geophysical Prospecting, 63, 271–282, doi: 10.1111/1365-2478.12189.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966, doi: 10.1190/1.1442051.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: Geophysics, 62, 1292–1309, doi: 10.1190/1.1444231.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tsvankin, I., 2012, Seismic signatures and analysis of reflection data in anisotropic media: SEG.AbstractGoogle Scholar
  • Vernik, L., and X. Liu, 1997, Velocity anisotropy in shales: A petrophysical study: Geophysics, 62, 521–532, doi: 10.1190/1.1444162.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vernik, L., and A. Nur, 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks: Geophysics, 57, 727–735, doi: 10.1190/1.1443286.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Weiss, R. M., and J. Shragge, 2013, Solving 3D anisotropic elastic wave equations on parallel GPU devices: Geophysics, 78, no. 2, F7–F15, doi: 10.1190/geo2012-0063.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Witten, B., and J. Shragge, 2015, Extended wave-equation imaging conditions for passive seismic data: Geophysics, 80, no. 6, WC61–WC72, doi: 10.1190/geo2015-0046.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Witten, B., and J. Shragge, 2017, Microseismic image-domain velocity inversion: Marcellus Shale case study: Geophysics, 82, no. 6, KS99–KS112, doi: 10.1190/geo2017-0263.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Yang, J., and H. Zhu, 2019, Locating and monitoring microseismicity, hydraulic fracture and earthquake rupture using elastic time-reversal imaging: Geophysical Journal International, 216, 726–744, doi: 10.1093/gji/ggy460.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar