This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

The W transform

Authors:

Time-frequency spectral analysis methods such as the S transform cannot appropriately present low-frequency anomalies in seismic traces because they generate a time-frequency spectrum with a low resolution in time at low frequencies. I have developed the W transform to improve the time resolution of the spectrum at low frequencies, for an effective detection of seismic anomalies related to hydrocarbon reservoirs in petroleum exploration and abnormal features in near-surface geophysics. The W transform has three features: (1) the spectral energy is concentrated around the dominant frequency of a seismic waveform, rather than being shifted toward higher frequencies by the S transform; (2) the implementation is numerically stable because it avoids any potential frequency singularity in the S transform; (3) the Gaussian window function is defined using a nonstationary frequency weight, rather than using a stationary frequency weight in the S transform, because the dominant frequency is a time-dependent function. Therefore, the time-frequency spectrum generated by the W transform appropriately represents seismic properties varying with geologic depth, and it has an improved time resolution at low frequencies that makes it suitable for characterizing reservoirs in petroleum geophysics and for detecting karsts in construction engineering.

REFERENCES

  • Aghdam, B. A., and M. A. Riahi, 2015, Application of modified AOGST to study the low frequency shadow zone in a gas reservoir: Journal of Geophysics and Engineering, 12, 770–779, doi: 10.1088/1742-2132/12/5/770.
  • Allen, J. B., 1977, Short term spectral analysis synthesis and modification by discrete Fourier transform: IEEE Transactions on Acoustics, Speech, and Signal Processing, 25, 235–238, doi: 10.1109/TASSP.1977.1162950.IETABA0096-3518
  • Askari, R., and R. J. Ferguson, 2012, Dispersion and the dissipative characteristics of surface waves in the generalized S-transform domain: Geophysics, 77, no. 1, V11–V20, doi: 10.1190/geo2010-0330.1.GPYSA70016-8033
  • Barnes, A. E., 1992, The calculation of instantaneous frequency and instantaneous bandwidth: Geophysics, 57, 1520–1524, doi: 10.1190/1.1443220.GPYSA70016-8033
  • Castagna, J. P., S. Sun, and R. W. Siegfried, 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22, 120–127, doi: 10.1190/1.1559038.
  • Ebrom, D., 2004, The low-frequency gas shadow on seismic sections: The Leading Edge, 23, 772, doi: 10.1190/1.1786898.
  • Gabor, D., 1946, Theory of communication: Journal of the Institution of Electrical Engineers, 93, 429–441.
  • Heisenberg, W., 1927, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik: Zeitschrift für Physik, 43, 172–198 (in German), doi: 10.1007/BF01397280.
  • Li, S., and Y. Rao, 2020, Seismic low-frequency amplitude analysis for identifying gas reservoirs within thinly layered media: Journal of Geophysics and Engineering, 17, 175–188, doi: 10.1093/jge/gxz099.
  • Mansinha, L., R. G. Stockwell, and R. P. Lowe, 1997, Local S-spectrum analysis of 1-D and 2-D data: Physics of the Earth and Planetary Interiors, 103, 329–336, doi: 10.1016/S0031-9201(97)00047-2.PEPIAM0031-9201
  • Mcfadden, P. D., J. G. Cook, and L. M. Forster, 1999, Decomposition of gear vibration signals by the generalized S transform: Mechanical Systems and Signal Processing, 13, 691–707, doi: 10.1006/mssp.1999.1233.
  • Pinnegar, C. R., and D. W. Eaton, 2003, Application of the S transform to prestack noise attenuation filtering: Journal of Geophysical Research, Solid Earth, 108, 2422, doi: 10.1029/2002JB002258.JGRPE50148-0227
  • Pinnegar, C. R., and L. Mansinha, 2003, The S-transform with windows of arbitrary and varying shape: Geophysics, 68, 381–385, doi: 10.1190/1.1543223.GPYSA70016-8033
  • Pinnegar, C. R., and L. Mansinha, 2004, Time-local Fourier analysis with a scalable phase-modulated analyzing function—The S-transform with a complex window: Signal Processing, 84, 1167–1176, doi: 10.1016/j.sigpro.2004.03.015.SPRODR0165-1684
  • Poggiagliolmi, E., and A. Vesnaver, 2014, Instantaneous phase and frequency derived without user-defined parameters: Geophysical Journal International, 199, 1544–1553, doi: 10.1093/gji/ggu352.GJINEA0956-540X
  • Schimmel, M., and J. Gallart, 2005, The inverse S-transform in filters with time-frequency localization: IEEE Transactions on Signal Processing, 53, 4417–4422, doi: 10.1109/TSP.2005.857065.ITPRED1053-587X
  • Stockwell, R. G., 2007, A basis for efficient representation of the S-transform: Digital Signal Processing, 17, 371–393, doi: 10.1016/j.dsp.2006.04.006.DSPREJ1051-2004
  • Stockwell, R. G., L. Mansinha, and R. P. Lowe, 1996, Localization of the complex spectrum—The S transform: IEEE Transactions on Signal Processing, 44, 998–1001, doi: 10.1109/78.492555.ITPRED1053-587X
  • Taner, M. T., F. Koehler, and R. E. Sheriff, 1979, Complex seismic trace analysis: Geophysics, 44, 1041–1063, doi: 10.1190/1.1440994.GPYSA70016-8033
  • Ville, J., 1948, Théorie et application de la notion de signal analytique: Câbles et Transmissions, 2, 61–74.
  • Wang, Y., 2007, Seismic time-frequency spectral decomposition by matching pursuit: Geophysics, 72, no. 1, V13–V20, doi: 10.1190/1.2387109.GPYSA70016-8033
  • Wang, Y., 2010, Multichannel matching pursuit for seismic trace decomposition: Geophysics, 75, no. 4, V61–V66, doi: 10.1190/1.3462015.GPYSA70016-8033
  • Wang, Y., 2015a, Frequencies of the Ricker wavelet: Geophysics, 80, no. 2, A31–A371, doi: 10.1190/geo2014-0441.1.GPYSA70016-8033
  • Wang, Y., 2015b, The Ricker wavelet and the Lambert W function: Geophysical Journal International, 200, 111–115, doi: 10.1093/gji/ggu384.GJINEA0956-540X