This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×
On Tuesday, 28 May 2024, from 1:00 am CDT to 1:00 pm CDT, the SEG Library will undergo a major site upgrade. During this time, users will be able to access their accounts, but certain features may be unavailable. We apologize for the inconvenience.

Full-waveform inversion (FWI) solves model optimization problems by fitting simulated data to the observed data. The implementation of FWI requires involving as many physical features of the subsurface medium in the simulation as possible. The computation can be extremely costly and complex because the FWI algorithm usually deploys a consistent discretization over the entire model space, whereas a high-resolution analysis (and the accompanying complex physics) is often only required in the reservoir region. As an alternative, we have developed an FWI optimization scheme based on a convolution type of modeling from the datum. The solution of such an inversion consists of the overburden, which includes the medium above a datum level, and the virtual data at the datum, which represent the underlying medium, i.e., the reservoir. We formulate the redatuming operation using a modified expression of the extended Born representation. Based on that, the virtual data can be retrieved by using the subsurface-scattering imaging condition. By measuring the data misfit at the surface acquisition, we implement a simultaneous inversion for the overburden velocity and the virtual data at that datum. This velocity inversion is crucial to the redatuming, but we can rely on fairly simple physics compared to the complex reservoir region. The redatumed data, in turn, are involved in resolving the overburden velocity. We develop a robust estimate of the velocity using low-wavenumber updates along the reflection wavepaths generated by our modeling process including the overburden scattering and those coming from the datum. Using numerical examples, we determine that our optimization is capable of mitigating the complex wave-propagation effects of the overburden medium and output redatumed data with plausible relative amplitude, which is achieved given little knowledge of the model.

REFERENCES

  • Albertin, U., G. Shan, and J. Washbourne, 2013, Gradient orthogonalization in adjoint scattering-series inversion: 83rd Annual International Meeting, SEG, Expanded Abstracts, 1058–1062, doi: 10.1190/segam2013-0580.1.AbstractGoogle Scholar
  • Alkhalifah, T., B. B. Sun, and Z. Wu, 2018, Full model wavenumber inversion: Identifying sources of information for the elusive middle model wavenumbers: Geophysics, 83, no. 6, R597–R610, doi: 10.1190/geo2017-0775.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., and Z. Wu, 2016, The natural combination of full and image-based waveform inversion: Geophysical Prospecting, 64, 19–30, doi: 10.1111/1365-2478.12264.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Bakulin, A., and R. Calvert, 2006, The virtual source method: Theory and case study: Geophysics, 71, no. 4, SI139–SI150, doi: 10.1190/1.2216190.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Baysal, E., D. D. Kosloff, and J. W. C. Sherwood, 1983, Reverse time migration: Geophysics, 48, 1514–1524, doi: 10.1190/1.1441434.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berkhout, A. J., 2012, Combining full wavefield migration and full waveform inversion, a glance into the future of seismic imaging: Geophysics, 77, no. 2, S43–S50, doi: 10.1190/geo2011-0148.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berryhill, J. R., 1979, Wave-equation datuming: Geophysics, 44, 1329–1344, doi: 10.1190/1.1441010.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Biondi, B., and W. Symes, 2004, Angle domain common image gathers for migration velocity analysis by wavefield continuation imaging: Geophysics, 69, 1283–1298, doi: 10.1190/1.1801945.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Brossier, R., S. Operto, and J. Virieux, 2015, Velocity model building from seismic reflection data by full-waveform inversion: Geophysical Prospecting, 63, 354–367, doi: 10.1111/1365-2478.12190.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1.1443880.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Chauris, H., and E. Cocher, 2017, From migration to inversion velocity analysis: Geophysics, 82, no. 3, S207, doi: 10.1190/geo2016-0359.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Choi, Y., and T. Alkhalifah, 2012, Application of multi-source waveform inversion to marine streamer data using the global correlation norm: Geophysical Prospecting, 60, 748–758, doi: 10.1111/j.1365-2478.2012.01079.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Choi, Y., and T. Alkhalifah, 2015, Unwrapped phase inversion with an exponential damping: Geophysics, 80, no. 5, R251–R264, doi: 10.1190/geo2014-0498.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications Inc.Google Scholar
  • Clément, F., G. Chavent, and S. Gómez, 2001, Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example: Geophysics, 66, 845–860, doi: 10.1190/1.1444974.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Curtis, A., and D. Halliday, 2010, Source-receiver wave field interferometry: Physical Review E, 81, 046601, doi: 10.1103/PhysRevE.81.046601.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Fink, M., 1992, Time reversal of ultrasonic fields — Part 1: Basic principles: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 39, 555–566, doi: 10.1109/58.156174.CrossrefWeb of ScienceGoogle Scholar
  • Guo, Q., T. Alkhalifah, and Z. Wu, 2017, Velocity building by reflection waveform inversion without cycle-skipping: 79th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201701003.CrossrefGoogle Scholar
  • Haines, A. J., 1988, Multi-source, multi-receiver synthetic seismograms for laterally heterogeneous media using F-K domain propagators: Geophysical Journal International, 95, 237–260, doi: 10.1111/j.1365-246X.1988.tb00465.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Hou, J., and W. W. Symes, 2015, An approximate inverse to the extended born modeling operator: Geophysics, 80, no. 6, R331–R349, doi: 10.1190/geo2014-0592.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Huang, G., W. Symes, and R. Nammour, 2016, Matched source waveform inversion: Volume extension: 86th Annual International Meeting, SEG, Expanded Abstracts, 1364–1368, doi: 10.1190/segam2016-13954250.1.AbstractGoogle Scholar
  • Kazei, V., and T. Alkhalifah, 2018, Waveform inversion for orthorhombic anisotropy with p waves: Feasibility and resolution: Geophysical Journal International, 213, 963–982, doi: 10.1093/gji/ggy034.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Koketsu, K., B. L. N. Kennett, and H. Takenaka, 1991, 2-D reflectivity method and synthetic seismograms for irregularly layered structures — Part 2: Invariant embedding approach: Geophysical Journal International, 105, 119–130, doi: 10.1111/j.1365-246x.1991.tb03448.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Lameloise, C.-A., and H. Chauris, 2016, Extension of migration velocity analysis to transmitted wavefields: Geophysical Journal International, 207, 343–356, doi: 10.1093/gji/ggw284.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Mora, P., 1989, Inversion = migration + tomography: Springer, 78–101.CrossrefGoogle Scholar
  • Oh, J., and T. A. Alkhalifah, 2016, 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data: 86th Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2016-13862511.1.AbstractGoogle Scholar
  • Plessix, R., Y. D. Roeck, and G. Chavent, 1995, Automatic and simultaneous migration velocity analysis and waveform inversion of real data using a MBTT/WKB J formulation: 65th Annual International Meeting, SEG, Expanded Abstracts, 1099–1102, doi: 10.1190/1.1887624.AbstractGoogle Scholar
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246x.2006.02978.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain — Part 1: Theory and verification in a physical scale model: Geophysics, 64, 888–901, doi: 10.1190/1.1444597.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pratt, R. G., C. Shin, and G. J. Hick, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341362.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Ravasi, M., I. Vasconcelos, A. Kritski, A. Curtis, C. A. d. C. Filho, and G. A. Meles, 2016, Target-oriented Marchenko imaging of a North Sea field: Geophysical Journal International, 205, 99–104, doi: 10.1093/gji/ggv528.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Rothman, D. H., 1986, Automatic estimation of large residual statics corrections: Geophysics, 51, 332–346, doi: 10.1190/1.1442092.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sava, P. C., B. Biondi, and J. Etgen, 2005, Wave-equation migration velocity analysis by focusing diffractions and reflections: Geophysics, 70, no. 3, U19–U27, doi: 10.1190/1.1925749.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Shen, P., 2013, Subsurface focusing measurement of diving waves and its application to reflection tomography: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Th 10 05, doi: 10.3997/2214-4609.20130116.CrossrefGoogle Scholar
  • Snieder, R., 2004, Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase: Physical Review E, 69, 046610, doi: 10.1103/PhysRevE.69.046610.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Staal, X., and D. Verschuur, 2013, Joint migration inversion, imaging including all multiples with automatic velocity update: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20130375.CrossrefGoogle Scholar
  • Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical Prospecting, 56, 765–790, doi: 10.1111/j.1365-2478.2008.00698.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Takenaka, H., B. Kennett, and K. Koketsu, 1993, The integral operator representation of propagation invariants for elastic waves in irregularly layered media: Wave Motion, 17, 299–317, doi: 10.1016/0165-2125(93)90010-D.WAMOD90165-2125CrossrefWeb of ScienceGoogle Scholar
  • Taner, M. T., D. E. Wagner, E. Baysal, and L. Lu, 1998, A unified method for 2-D and 3-D refraction statics: Geophysics, 63, 260–274, doi: 10.1190/1.1444320.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • van der Neut, J., I. Vasconcelos, and K. Wapenaar, 2015, On Green’s function retrieval by iterative substitution of the coupled Marchenko equations: Geophysical Journal International, 203, 792–813, doi: 10.1093/gji/ggv330.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Vasconcelos, I., M. Ravasi, and J. van der Neut, 2017, Subsurface-domain, interferometric objective functions for target-oriented waveform inversion: Geophysics, 82, no. 4, A37–A41, doi: 10.1190/geo2016-0608.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vasconcelos, I., P. Sava, and H. Douma, 2010, Nonlinear extended images via image-domain interferometry: Geophysics, 75, no. 6, SA105–SA115, doi: 10.1190/1.3494083.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vasconcelos, I., and R. Snieder, 2008, Interferometry by deconvolution — Part 1: Theory for acoustic waves and numerical examples: Geophysics, 73, no. 3, S115–S128, doi: 10.1190/1.2904554.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vasconcelos, I., C. R. Urruticoechea, and J. Brackenhoff, 2018, Estimating overburden-only transmission waveforms from surface reflection data: 80th Annual International Conference and Exhibition, EAGE, Extended Abstracts, 15, doi: 10.3997/2214-4609.201801096.CrossrefGoogle Scholar
  • Wapenaar, K., 2004, Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation: Physical Review Letters, 93, 254301, doi: 10.1103/PhysRevLett.93.254301.PRLTAO0031-9007CrossrefWeb of ScienceGoogle Scholar
  • Wapenaar, K., 2007, General representations for wavefield modeling and inversion in geophysics: Geophysics, 72, no. 5, SM5–SM17, doi: 10.1190/1.2750646.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. Thorbecke, and D. Draganov, 2004, Relations between reflection and transmission responses of three-dimensional inhomogeneous media: Geophysical Journal International, 156, 179–194, doi: 10.1111/j.1365-246x.2003.02152.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. Thorbecke, J. van der Neut, F. Broggini, E. Slob, and R. Snieder, 2014, Marchenko imaging: Geophysics, 79, no. 3, WA39–WA57, doi: 10.1190/geo2013-0302.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. van der Neut, E. Ruigrok, D. Draganov, J. Hunziker, E. Slob, J. Thorbecke, and R. Snieder, 2011, Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison: Geophysical Journal International, 185, 1335–1364, doi: 10.1111/j.1365-246x.2011.05007.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Wu, Z., and T. Alkhalifah, 2014, Full waveform inversion based on the optimized gradient and its spectral implementation: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20140706.CrossrefGoogle Scholar
  • Wu, Z., and T. Alkhalifah, 2018, Selective data extension for full-waveform inversion: An efficient solution for cycle skipping: Geophysics, 83, no. 3, R201–R211, doi: 10.1190/geo2016-0649.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Xu, S., D. Wang, F. Chen, Y. Zhang, and G. Lambare, 2012, Full waveform inversion for reflected seismic data: 74th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20148725.CrossrefGoogle Scholar
  • Yang, D., Y. Zheng, M. Fehler, and A. Malcolm, 2012, Target-oriented time-lapse waveform inversion using virtual survey: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1–5, doi: 10.1190/segam2012-1308.1.AbstractGoogle Scholar
  • Yilmaz, O., and D. Lucas, 1986, Prestack layer replacement: Geophysics, 51, 1355–1369, doi: 10.1190/1.1442186.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhou, W., R. Brossier, S. Operto, and J. Virieux, 2015, Full waveform inversion of diving and reflected waves for velocity model building with impedance inversion based on scale separation: Geophysical Journal International, 202, 1535–1554, doi: 10.1093/gji/ggv228.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Zhu, X., D. P. Sixta, and B. G. Angstman, 1992, Tomostatics: Turning ray tomography + static corrections: The Leading Edge, 11, 15–23, doi: 10.1190/1.1436864.AbstractGoogle Scholar