Viscoelastic substitute models for seismic attenuation caused by squirt flow and fracture leak off
Authors:ABSTRACT
We have investigated viscoelastic substitute models for seismic attenuation caused by fluid pressure diffusion in fluid-saturated porous media. Fluid pressure diffusion may locally occur associated with fracture leak off and/or squirt flow. We use a homogenization scheme with numerical model reduction (NMR), recently established in the literature, and we derive the corresponding viscoelastic material properties that are apparent at a larger scale (i.e., the observer scale). Moreover, we find that the rheology of the resulting viscoelastic model is of the Maxwell-Zener type. Based on a series of numerical experiments, we find that this method is able to accurately and efficiently predict the overall attenuation and stiffness moduli dispersion for a range of scenarios without resolving the substructure problem explicitly. Computational homogenization, together with NMR, can be useful to simulate seismic wave propagation using a viscoelastic substitute model that accurately reproduces the energy dissipation and dispersion of a heterogeneous medium in which squirt flow and/or fracture leak-off occurs.
REFERENCES
- 2010, Frequency and fluid effects on elastic properties of basalt: Experimental investigations: Geophysical Research Letters, 37,
L02303 , doi:10.1029/2009GL041660 .CrossrefWeb of ScienceGoogle Scholar , - 1941, General theory of three-dimensional consolidation: Journal of Applied Physics, 12,
155–164 , doi:10.1063/1.1712886 .CrossrefGoogle Scholar , - 1962, Mechanics of deformation and acoustic propagation in porous media: Journal of Applied Physics, 33,
1482–1498 , doi:10.1063/1.1728759 .CrossrefWeb of ScienceGoogle Scholar , - 2005, A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures: Geophysical Journal International, 163,
372–384 , doi:10.1111/j.1365-246X.2005.02722.x .CrossrefWeb of ScienceGoogle Scholar , - 2010, Computational poroelasticity — A review: Geophysics, 75, no. 5,
75A229–75A243 , doi:10.1190/1.3474602 .AbstractWeb of ScienceGoogle Scholar , - 2009, P-wave dispersion and attenuation in fractured and porous reservoirs — Poroelasticity approach: Geophysical Prospecting, 57,
225–237 , doi:10.1111/j.1365-2478.2009.00785.x .CrossrefWeb of ScienceGoogle Scholar , - 2010, A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks: Geophysics, 75, no. 6,
N109–N120 , doi:10.1190/1.3509782 .AbstractWeb of ScienceGoogle Scholar , - 2016, Numerical identification of a viscoelastic substitute model for heterogeneous poroelastic media by a reduced order homogenization approach: Computer Methods in Applied Mechanics and Engineering, 298,
108–120 , doi:10.1016/j.cma.2015.09.024 .CrossrefWeb of ScienceGoogle Scholar , - 2019, Identification of viscoelastic properties from numerical model reduction of pressure diffusion in fluid-saturated porous rock with fractures: Computational Mechanics, 63,
49–67 , doi:10.1007/s00466-018-1584-7 .CrossrefWeb of ScienceGoogle Scholar , - 2015, Numerical homogenization of mesoscopic loss in poroelastic media: European Journal of Mechanics — A/Solids, 49,
382–395 , doi:10.1016/j.euromechsol.2014.08.011 .CrossrefWeb of ScienceGoogle Scholar , - 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review: Geophysics, 75, no. 5,
A147–A164 , doi:10.1190/1.3463417 .AbstractWeb of ScienceGoogle Scholar , - 1986, Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation: Geophysics, 51,
757–766 , doi:10.1190/1.1442128 .AbstractWeb of ScienceGoogle Scholar , - 1977, Viscoelastic properties of fluid-saturated cracked solids: Journal of Geophysical Research, 82,
5719–5735 , doi:10.1029/JB082i036p05719 .CrossrefWeb of ScienceGoogle Scholar , - 2015, Bulk modulus dispersion and attenuation in sandstones: Geophysics, 80, no. 2,
D111–D127 , doi:10.1190/geo2014-0335.1 .AbstractWeb of ScienceGoogle Scholar , - 2014, Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks: Geophysics, 79, no. 5,
WB15–WB24 , doi:10.1190/geo2013-0409.1 .AbstractWeb of ScienceGoogle Scholar , - 2016, A simple hydromechanical approach for simulating squirt-type flow: Geophysics, 81, no. 4,
D335–D344 , doi:10.1190/geo2015-0383.1 .AbstractWeb of ScienceGoogle Scholar , - 2011, Quasi-static finite-element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media: Journal of Geophysical Research, 116,
B01201 , doi:10.1029/2010JB007475 .CrossrefWeb of ScienceGoogle Scholar , - 2013, Do seismic waves sense fracture connectivity?: Geophysical Research Letters, 40,
692–696 , doi:10.1002/grl.50127 .CrossrefWeb of ScienceGoogle Scholar , - 2015, Laboratory-based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow: Journal of Geophysical Research, 120,
7526–7535 .Google Scholar , - 2014, Pore fluid viscosity effects on P- and S-wave anisotropy in synthetic silica-cemented sandstone with aligned fractures: Geophysical Prospecting, 62,
1238–1252 , doi:10.1111/1365-2478.12194 .CrossrefWeb of ScienceGoogle Scholar , - 2014, On attenuation of seismic waves associated with flow in fractures: Geophysical Research Letters, 41,
7515–7523 , doi:10.1002/2014GL061634 .CrossrefWeb of ScienceGoogle Scholar , - 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40,
224–232 , doi:10.1190/1.1440520 .AbstractWeb of ScienceGoogle Scholar , - 2012, Computation of dynamic seismic responses to viscous fluid of digitized three-dimensional Berea sandstones with a coupled finite-difference method: The Journal of the Acoustical Society of America, 132,
630–640 , doi:10.1121/1.4733545 .CrossrefWeb of ScienceGoogle Scholar ,