This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Mineralogical and textural controls on spectral induced polarization signatures of the Canadian Malartic gold deposit: Applications to mineral exploration

Authors:

Applications of the spectral induced polarization (SIP) method to mineral exploration are limited by our knowledge of the relationships among rock texture, mineral composition, and electrical properties. Laboratory SIP responses were measured on rock samples from the Canadian Malartic gold deposit. Field SIP responses were also measured at the outcrop scale, along a profile that intersects a well-studied mineralized zone. The mineralogy and the texture of sedimentary rocks from this deposit were quantitatively determined with mineral liberation analysis. A systematic decrease (Pearson r=0.75) in total chargeability with increasing fraction of the sulfide mineral interfaces associated with feldspar minerals (namely, K-feldspar and albite) was observed. On the other hand, total chargeability increased with the fraction of sulfide mineral interfaces associated with carbonates and micas (Pearson r=0.89). At Canadian Malartic, proximal alteration in the mineralized zones is marked by rocks that lack a foliation plane and that were subjected to pervasive K-feldspar, albite, and pyrite alteration. In contrast, distal alteration in sedimentary rocks is marked by biotite, albite, carbonate, and pyrite that are oriented along the regional S2 foliation. In the least-altered (LA) sedimentary rocks, quartz and biotite are associated with pyrrhotite and ilmenite as the main sulfide and oxide mineral phases, respectively. SIP measurements conducted at district and outcrop scales and along a drill core indicated that proximally altered sedimentary rocks were characterized by low total chargeability values (0.27±0.01 to 0.42±0.02 in the laboratory and 0.21±0.04 in the field). In contrast, the LA sedimentary rocks were characterized by total chargeability values up to 0.72±0.07 in the laboratory and 0.38±0.06 in the field. We conclude that mineralized zones associated with this type of ore deposit are characterized by low chargeability anomalies.

REFERENCES

  • Abdulsamad, F., N. Florsch, and C. Camerlynck, 2017, Spectral induced polarization in a sandy medium containing semiconductor materials: Experimental results and numerical modelling of the polarization mechanism: Near Surface Geophysics, 15, 669–683.
  • Ayer, J., Y. Amelin, F. Corfu, S. Kamo, J. Ketchum, K. Kwok, and N. Trowell, 2002, Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: Autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation: Precambrian Research, 115, 63–95, doi: 10.1016/S0301-9268(02)00006-2.PCBRBY0301-9268
  • Bacon, L., 1965, Induced-polarization logging in the search for native copper: Geophysics, 30, 246–256, doi: 10.1190/1.1439564.GPYSA70016-8033
  • Bairlein, K., M. Bücker, A. Hördt, and B. Hinze, 2016, Temperature dependence of spectral induced polarization data: Experimental results and membrane polarization theory: Geophysical Journal International, 205, 440–453, doi: 10.1093/gji/ggw027.GJINEA0956-540X
  • Balia, B., G. P. Deidda, A. Godio, G. Ranieri, L. Sambuelli, and G. Santarato, 1994, An experiment of spectral induced polarization: Annals of Geophysics, 37, 1313–1321, doi: 10.4401/ag-4176.
  • Bérubé, C. L., M. Chouteau, G. R. Olivo, S. Perrouty, P. Shamsipour, and R. J. Enkin, 2017a, Spectral induced polarization signatures of altered metasedimentary rocks from the Canadian Calartic Gold deposit Bravo zone, Québec, Canada: Symposium on the Application of Geophysics to Engineering and Environmental Problems, SEG and Environment and Engineering Geophysical Society, 204–208.
  • Bérubé, C. L., M. Chouteau, P. Shamsipour, R. J. Enkin, and G. R. Olivo, 2017b, Bayesian inference of spectral induced polarization parameters for laboratory complex resistivity measurements of rocks and soils: Computers and Geosciences, 105, 51–64, doi: 10.1016/j.cageo.2017.05.001.
  • Bérubé, C. L., G. R. Olivo, M. Chouteau, S. Perrouty, P. Shamsipour, R. J. Enkin, W. A. Morris, L. Feltrin, and R. Thiémonge, 2018, Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada: Ore Geology Reviews, 96, 130–145, doi: 10.1016/j.oregeorev.2018.04.011.OGREER0169-1368
  • Binley, A., S. Kruschwitz, D. Lesmes, and N. Kettridge, 2010, Exploiting the temperature effects on low frequency electrical spectra of sandstone: A comparison of effective diffusion path lengths: Geophysics, 75, no. 6, A43–A46, doi: 10.1190/1.3483815.GPYSA70016-8033
  • Börner, F. D., and J. H. Schön, 1991, A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks: The Log Analyst, 32, 612–613, SPWLA-1991-v32n5a12.LGALAS0024-581X
  • Bücker, M., and A. Hördt, 2013, Long and short narrow pore models for membrane polarization: Geophysics, 78, no. 6, E299–E314, doi: 10.1190/geo2012-0548.1.GPYSA70016-8033
  • Bücker, M., A. F. Orozco, A. Hördt, and A. Kemna, 2017, An analytical membrane-polarization model to predict the complex conductivity signature of immiscible liquid hydrocarbon contaminants: Near Surface Geophysics, 15, 547–562.
  • Camiré, G. E., and J. P. Burg, 1993, Late Archaean thrusting in the northwestern Pontiac Subprovince, Canadian Shield: Precambrian Research, 61, 51–66, doi: 10.1016/0301-9268(93)90057-9.PCBRBY0301-9268
  • Camiré, G. E., M. R. Laflèche, and J. N. Ludden, 1993a, Archaean metasedimentary rocks from the northwestern Pontiac Subprovince of the Canadian shield: Chemical characterization, weathering and modelling of the source areas: Precambrian Research, 62, 285–305, doi: 10.1016/0301-9268(93)90026-X.PCBRBY0301-9268
  • Camiré, G. E., J. N. Ludden, M. R. L. Flèche, and J. P. Burg, 1993b, Mafic and ultramafic amphibolites from the northwestern Pontiac Subprovince: Chemical characterization and implications for tectonic setting: Canadian Journal of Earth Sciences, 30, 1110–1122, doi: 10.1139/e93-094.CJESAP0008-4077
  • Chen, J., A. Kemna, and S. S. Hubbard, 2008, A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters: Geophysics, 73, no. 6, F247–F259, doi: 10.1190/1.2976115.GPYSA70016-8033
  • Cole, K. S., and R. H. Cole, 1941, Dispersion and absorption in dielectrics. I. Alternating current characteristics: The Journal of Chemical Physics, 9, 341–351, doi: 10.1063/1.1750906.
  • Davis, D. W., 2002, U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics: Precambrian Research, 115, 97–117, doi: 10.1016/S0301-9268(02)00007-4.PCBRBY0301-9268
  • Derry, D. R., 1939, The geology of the Canadian Malartic Gold mine, N. Quebec: Economic Geology, 34, 495–523, doi: 10.2113/gsecongeo.34.5.495.ECGLAL0361-0128
  • De Souza, S., B. Dube, V. McNicoll, C. Dupuis, P. Mercier-Langevin, R. A. Creaser, and I. M. Kjarsgaard, 2015, Geology, hydrothermal alteration, and genesis of the world-class Canadian Malartic stockwork-disseminated Archean gold deposit, Abitibi, Quebec, in B. DubéP. Mercier-Langevin, eds., Targeted Geoscience Initiative 4: Contributions to the understanding of precambrian lode gold deposits and implications for exploration: Geological Survey of Canada, Open File 7852, 115–126.
  • Dias, C. A., 2000, Developments in a model to describe low-frequency electrical polarization of rocks: Geophysics, 65, 437–451, doi: 10.1190/1.1444738.GPYSA70016-8033
  • Flores Orozco, A., J. Gallistl, M. Bücker, and K. H. Williams, 2016, Decay-curve analysis for the quantification of data error in time-domain induced polarization imaging: 4th International Workshop on Induced Polarization, Abstracts from session A, 43.
  • Flores Orozco, A., A. Kemna, C. Oberdörster, L. Zschornack, C. Leven, P. Dietrich, and H. Weiss, 2012, Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging: Journal of Contaminant Hydrology, 136–137, 131–144, doi: 10.1016/j.jconhyd.2012.06.001.JCOHE60169-7722
  • Flores Orozco, A., K. H. Williams, P. E. Long, S. S. Hubbard, and A. Kemna, 2011, Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an Uranium-contaminated aquifer: Journal of Geophysical Research: Biogeosciences, 116, G03001, doi: 10.1029/2010JG001591.
  • Gaillard, N., A. E. Williams-Jones, J. R. Clark, P. Lypaczewski, S. Salvi, S. Perrouty, N. Piette-Lauzière, C. Guilmette, and R. L. Linnen, 2018, Mica composition as a vector to gold mineralization: Deciphering hydrothermal and metamorphic effects in the Malartic District, Québec: Ore Geology Reviews, 95, 789–820, doi: 10.1016/j.oregeorev.2018.02.009.OGREER0169-1368
  • Gao, Z., F.-H. Haegel, J. A. Huisman, O. Esser, E. Zimmermann, and H. Vereecken, 2017, Spectral induced polarization for the characterisation of biochar in sand: Near Surface Geophysics, 15, 645–656.
  • Gervais, D., C. Roy, A. Thibault, C. Pednault, and D. Doucet, 2014, Mineral resource and mineral reserve estimates for the Canadian Malartic property: Technical Report, Mine Canadian Malartic.
  • Ghorbani, A., C. Camerlynck, N. Florsch, P. Cosenza, and A. Revil, 2007, Bayesian inference of the Cole-Cole parameters from time- and frequency-domain induced polarization: Geophysical Prospecting, 55, 589–605, doi: 10.1111/j.1365-2478.2007.00627.x.GPPRAR0016-8025
  • Gurin, G., A. Tarasov, Y. Ilyin, and K. Titov, 2013, Time domain spectral induced polarization of disseminated electronic conductors: Laboratory data analysis through the Debye decomposition approach: Journal of Applied Geophysics, 98, 44–53, doi: 10.1016/j.jappgeo.2013.07.008.JAGPEA0926-9851
  • Gurin, G., K. Titov, Y. Ilyin, and A. Tarasov, 2015, Induced polarization of disseminated electronically conductive minerals: A semi-empirical model: Geophysical Journal International, 200, 1555–1565, doi: 10.1093/gji/ggu490.GJINEA0956-540X
  • Helt, K. M., A. E. Williams-Jones, J. R. Clark, B. A. Wing, and R. P. Wares, 2014, Constraints on the genesis of the Archean oxidized, intrusion-related Canadian Malartic gold deposit, Quebec, Canada: Economic Geology, 109, 713–735, doi: 10.2113/econgeo.109.3.713.ECGLAL0361-0128
  • Johansson, S., C. Sparrenbom, G. Fiandaca, A. Lindskog, P.-I. Olsson, T. Dahlin, and H. Rosqvist, 2017, Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy: Geophysical Journal International, 208, 954–972, doi: 10.1093/gji/ggw432.GJINEA0956-540X
  • Jougnot, D., A. Ghorbani, A. Revil, P. Leroy, and P. Cosenza, 2010, Spectral induced polarization of partially saturated clay-rocks: A mechanistic approach: Geophysical Journal International, 180, 210–224, doi: 10.1111/j.1365-246X.2009.04426.x.GJINEA0956-540X
  • Keery, J., A. Binley, A. Elshenawy, and J. Clifford, 2012, Markov-chain Monte Carlo estimation of distributed Debye relaxations in spectral induced polarization: Geophysics, 77, no. 2, E159–E170, doi: 10.1190/geo2011-0244.1.GPYSA70016-8033
  • Kruschwitz, S., A. Binley, D. Lesmes, and A. Elshenawy, 2010, Textural controls on low-frequency electrical spectra of porous media: Geophysics, 75, no. 4, WA113–WA123, doi: 10.1190/1.3479835.GPYSA70016-8033
  • Leroy, P., A. Revil, A. Kemna, P. Cosenza, and A. Ghorbani, 2008, Complex conductivity of water-saturated packs of glass beads: Journal of Colloid and Interface Science, 321, 103–117, doi: 10.1016/j.jcis.2007.12.031.JCISA50021-9797
  • Lesmes, D. P., and F. D. Morgan, 2001, Dielectric spectroscopy of sedimentary rocks: Journal of Geophysical Research: Solid Earth, 106, 13329–13346, doi: 10.1029/2000JB900402.
  • Mao, D., A. Revil, and J. Hinton, 2016, Induced polarization response of porous media with metallic particles — Part 4: Detection of metallic and nonmetallic targets in time-domain induced polarization tomography: Geophysics, 81, no. 4, D359–D375, doi: 10.1190/geo2015-0480.1.GPYSA70016-8033
  • Marshall, D. J., and T. R. Madden, 1959, Induced polarization, a study of its causes: Geophysics, 24, 790–816, doi: 10.1190/1.1438659.GPYSA70016-8033
  • Mewafy, F. M., D. D. Werkema, E. A. Atekwana, L. D. Slater, G. Abdel Aal, A. Revil, and D. Ntarlagiannis, 2013, Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site: Journal of Applied Geophysics, 98, 113–123, doi: 10.1016/j.jappgeo.2013.08.011.JAGPEA0926-9851
  • Misra, S., C. Torres-Verdín, A. Revil, J. Rasmus, and D. Homan, 2016a, Interfacial polarization of disseminated conductive minerals in absence of redox-active species — Part 1: Mechanistic model and validation: Geophysics, 81, no. 2, E139–E157, doi: 10.1190/geo2015-0346.1.GPYSA70016-8033
  • Misra, S., C. Torres-Verdín, A. Revil, J. Rasmus, and D. Homan, 2016b, Interfacial polarization of disseminated conductive minerals in absence of redox-active species — Part 2: Effective electrical conductivity and dielectric permittivity: Geophysics, 81, no. 2, E159–E176, doi: 10.1190/geo2015-0400.1.GPYSA70016-8033
  • Morgan, F. D., and D. P. Lesmes, 1994, Inversion for dielectric relaxation spectra: The Journal of Chemical Physics, 100, 671–681, doi: 10.1063/1.466932.
  • Mortensen, J. K., and K. D. Card, 1993, U-Pb age constraints for the magmatic and tectonic evolution of the Pontiac Subprovince, Quebec: Canadian Journal of Earth Sciences, 30, 1970–1980, doi: 10.1139/e93-173.CJESAP0008-4077
  • Niu, Q., A. Revil, and M. Saidian, 2016, Salinity dependence of the complex surface conductivity of the Portland sandstone: Geophysics, 81, no. 2, D125–D140, doi: 10.1190/geo2015-0426.1.GPYSA70016-8033
  • Nordsiek, S., and A. Weller, 2008, A new approach to fitting induced-polarization spectra: Geophysics, 73, no. 6, F235–F245, doi: 10.1190/1.2987412.GPYSA70016-8033
  • Pelton, W., and P. Smith, 1976, Mapping porphyry copper deposits in the Philippines with IP: Geophysics, 41, 106–122, doi: 10.1190/1.1440594.GPYSA70016-8033
  • Pelton, W. H., W. R. Sill, and B. D. Smith, 1983, Interpretation of complex resistivity and dielectric data, Part I: Geophysical Transactions, 29, 297–330.GEKOAI0016-7177
  • Pelton, W. H., S. H. Ward, P. G. Hallof, W. R. Sill, and P. H. Nelson, 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43, 588–609, doi: 10.1190/1.1440839.GPYSA70016-8033
  • Perrouty, S., N. Gaillard, N. Piette-Lauzière, R. Mir, M. Bardoux, G. R. Olivo, R. L. Linnen, C. L. Bérubé, P. Lypaczewski, C. Guilmette, L. Feltrin, and W. A. Morris, 2017, Structural setting for Canadian Malartic style of gold mineralization in the Pontiac Subprovince, south of the cadillac larder lake deformation zone, Québec, Canada: Ore Geology Reviews, 84, 185–201, doi: 10.1016/j.oregeorev.2017.01.009.OGREER0169-1368
  • Perrouty, S., R. L. Linnen, C. M. Lesher, G. R. Olivo, S. J. Piercey, N. Gaillard, J. R. Clark, and R. J. Enkin, 2018, Expanding the size of multi-parameter metasomatic footprints in gold exploration: Utilization of mafic dykes in the Canadian Malartic district, Québec, Canada: Mineralium Deposita, doi: 10.1007/s00126-018-0829-x.MIDEBE0026-4598
  • Pilote, P., G. Beaudoin, F. Chabot, M. Crevier, J. P. Desrochers, D. Giovenazzo, S. Lavoie, J. Moorhead, W. Mueller, P. Pelz, F. Robert, C. Scott, A. Tremblay, and L. Vorobiev, 2000, Géologie de la région de Val-d’Or, sous-province de l’Abitibi — Volcanologie physique et évolution métallogénique: Ministère des Ressources Naturelles du Québec, MB 2000–9.
  • Placencia-Gomez, E., A. Parviainen, L. Slater, and J. Leveinen, 2015, Spectral induced polarization (SIP) response of mine tailings: Journal of Contaminant Hydrology, 173, 8–24, doi: 10.1016/j.jconhyd.2014.12.002.JCOHE60169-7722
  • Placencia-Gomez, E., L. Slater, D. Ntarlagiannis, and A. Binley, 2013, Laboratory SIP signatures associated with oxidation of disseminated metal sulfides: Journal of Contaminant Hydrology, 148, 25–38, doi: 10.1016/j.jconhyd.2013.02.007.JCOHE60169-7722
  • Revil, A., 2013, Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz-1 GHz: Water Resources Research, 49, 306–327, doi: 10.1029/2012WR012700.WRERAQ0043-1397
  • Revil, A., G. Z. A. Aal, E. A. Atekwana, D. Mao, and N. Florsch, 2015a, Induced polarization response of porous media with metallic particles — Part 2: Comparison with a broad database of experimental data: Geophysics, 80, no. 5, D539–D552, doi: 10.1190/geo2014-0578.1.GPYSA70016-8033
  • Revil, A., M. L. Breton, Q. Niu, E. Wallin, E. Haskins, and D. M. Thomas, 2017, Induced polarization of volcanic rocks. 2. Influence of pore size and permeability: Geophysical Journal International, 208, 814–825, doi: 10.1093/gji/ggw382.GJINEA0956-540X
  • Revil, A., N. Florsch, and C. Camerlynck, 2014, Spectral induced polarization porosimetry: Geophysical Journal International, 198, 1016–1033, doi: 10.1093/gji/ggu180.GJINEA0956-540X
  • Revil, A., N. Florsch, and D. Mao, 2015b, Induced polarization response of porous media with metallic particles — Part 1: A theory for disseminated semiconductors: Geophysics, 80, no. 5, D525–D538, doi: 10.1190/geo2014-0577.1.GPYSA70016-8033
  • Robert, F., and K. H. Poulsen, 1997, World-class Archaean gold deposits in Canada: An overview: Australian Journal of Earth Sciences, 44, 329–351, doi: 10.1080/08120099708728316.AJESE7
  • Robert, F., K. H. Poulsen, K. F. Cassidy, and C. J. Hodgson, 2005, Gold metallogeny of the superior and Yilgarn cratons: Economic Geology, 100th Anniversary Volume, 1001–1033.
  • Rossi, M., P. I. Olsson, S. Johanson, G. Fiandaca, D. P. Bergdahl, and T. Dahlin, 2017, Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography: Near Surface Geophysics, 15, 657–667.
  • Sansfaçon, R., M. Grant, and P. Trudel, 1987a, Geologie de la mine Canadian Malartic: district de Val d’Or: Ministère des Ressources Naturelles du Québec, MB 87–26.
  • Sansfaçon, R., M. Grant, and P. Trudel, 1987b, Géologie de la mine Barnat-Sladen, Malartic: district de Val-d’Or: Ministère des Ressources Naturelles du Québec, MB 87–41.
  • Sansfaçon, R., and C. Hubert, 1990, The Malartic gold district, Abitibi greenstone belt, Quebec; geological setting, structure and timing of gold emplacement at Malartic Gold Fields, Barnat, East-Malartic, Canadian Malartic and Sladen mines, Section Val d’Or and Malartic mining camps, in M. RiveP. Varpaelst, eds., The northwestern Quebec polymetallic belt: A summary of 60 years of mining exploration: Canadian Institute of Mining and Metallurgy 43, 221–235.
  • Schmutz, M., A. Ghorbani, P. Vaudelet, and A. Blondel, 2014, Cable arrangement to reduce electromagnetic coupling effects in spectral-induced polarization studies: Geophysics, 79, no. 2, A1–A5, doi: 10.1190/geo2013-0301.1.GPYSA70016-8033
  • Shin, S. W., S. Park, and D. B. Shin, 2015, Development of a new equivalent circuit model for spectral induced polarization data analysis of ore samples: Environmental Earth Sciences, 74, 5711–5716, doi: 10.1007/s12665-015-4588-z.
  • Slater, L., D. Ntarlagiannis, and D. Wishart, 2006, On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures: Geophysics, 71, no. 2, A1–A5, doi: 10.1190/1.2187707.GPYSA70016-8033
  • Spitzer, K., and M. Chouteau, 2003, A dc resistivity and IP borehole survey at the Casa Berardi gold mine in northwestern Quebec: Geophysics, 68, 453–463, doi: 10.1190/1.1567221.GPYSA70016-8033
  • Sumi, F., 1959, Geophysical exploration in mining by induced polarization: Geophysical Prospecting, 7, 300–310, doi: 10.1111/j.1365-2478.1959.tb01472.x.GPPRAR0016-8025
  • Tarasov, A., and K. Titov, 2013, On the use of the Cole-Cole equations in spectral induced polarization: Geophysical Journal International, 195, 352–356, doi: 10.1093/gji/ggt251.GJINEA0956-540X
  • Tavakoli, S., T. E. Bauer, T. M. Rasmussen, P. Weihed, and S.-A. Elming, 2016, Deep massive sulphide exploration using 2D and 3D geoelectrical and induced polarization data in Skellefte mining district, northern Sweden: Geophysical Prospecting, 64, 1602–1619, doi: 10.1111/1365-2478.12363.GPPRAR0016-8025
  • Titov, K., V. Komarov, V. Tarasov, and A. Levitski, 2002, Theoretical and experimental study of time domain-induced polarization in water-saturated sands: Journal of Applied Geophysics, 50, 417–433, doi: 10.1016/S0926-9851(02)00168-4.JAGPEA0926-9851
  • Trudel, P., and P. Sauvé, 1992, Synthèse des caractéristiques géologiques des gisements d’or du district de Malartic: Ministère des Ressources Naturelles du Québec.
  • Wares, R., and J. Burzynski, 2011, The Canadian Malartic mine, Southern Abitibi belt, Quebec, Canada: Discovery and development of an Archean Bulk Tonnage Gold Deposit: Osisko Mining Corporation.
  • Weigand, M., and A. Kemna, 2016, Debye decomposition of time-lapse spectral induced polarisation data: Computers and Geosciences, 86, 34–45, doi: 10.1016/j.cageo.2015.09.021.
  • Weller, A., L. Slater, S. Nordsiek, and D. Ntarlagiannis, 2010, On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple data sets: Geophysics, 75, no. 4, WA105–WA112, doi: 10.1190/1.3471577.GPYSA70016-8033
  • Whitney, D. L., and B. W. Evans, 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, 95, 185–187, doi: 10.2138/am.2010.3371.AMMIAY0003-004X
  • Wong, J., 1979, An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores: Geophysics, 44, 1245–1265, doi: 10.1190/1.1441005.GPYSA70016-8033
  • Wynn, J., 1988, Titanium geophysics: The application of induced polarization to sea-floor mineral exploration: Geophysics, 53, 386–401, doi: 10.1190/1.1442472.GPYSA70016-8033
  • Zisser, N., A. Kemna, and G. Nover, 2010, Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones: Geophysics, 75, no. 3, E131–E141, doi: 10.1190/1.3413260.GPYSA70016-8033