This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


tTEM — A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of the subsurface


There is a growing need for detailed investigation of the top 30–50 m of the subsurface, which is critical for infrastructure, water supply, aquifer storage and recovery, farming, waste deposits, and construction. Existing geophysical methods are capable of imaging this zone; however, they have limited efficiency when it comes to creating full 3D images with high resolution over dozens to hundreds of hectares. We have developed a new and highly efficient towed transient electromagnetic (tTEM) system, which is capable of imaging the subsurface up to depth of 70 m at a high resolution, horizontally and vertically. Towed by an all-terrain vehicle, the system uses a 2×4  m transmitter coil and has a z-component receiver placed at 9 m offset from the transmitter. The tTEM uses dual transmitter moment (low and high moment) measurement sequence to obtain the early and late time gates corresponding to shallow and deep information about the subsurface layers. The first bias-free gate is as early as 4  μs from beginning of the ramp (1.4  μs after end of ramp). Data are processed and inverted using methods directly adopted from airborne electromagnetics. The system has been successfully used in Denmark for various purposes, e.g., mapping raw materials, investigating contaminated sites, and assessing aquifer vulnerability. We have also used the tTEM system in the Central Valley of California (United States) for locating artificial recharge sites and in the Mississippi Delta region, to map complex subsurface geology in great detail for building hydrogeologic models.


  • Allard, M., 2007, On the origin of the HTEM species: Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 356–373.Google Scholar
  • Andersen, K. R., N. S. Nyboe, C. Kirkegaard, E. Auken, and A. V. Christiansen, 2015, A system response convolution routine for improved near surface sensitivity in SkyTEM data: 77th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201413874.CrossrefGoogle Scholar
  • Auken, E., T. Boesen, and A. V. Christiansen, 2017, A review of airborne electromagnetic methods with focus on geotechnical and hydrological applications from 2007 to 2017, in L. Nielsen, ed., Advances in geophysics: Academic Press Elsevier, 47–93.CrossrefGoogle Scholar
  • Auken, E., A. V. Christiansen, G. Fiandaca, C. Schamper, A. A. Behroozmand, A. Binley, E. Nielsen, F. Effersø, N. B. Christensen, K. I. Sørensen, N. Foged, and G. Vignoli, 2015, An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data: Exploration Geophysics, 46, 223–235, doi: 10.1071/EG13097.CrossrefWeb of ScienceGoogle Scholar
  • Auken, E., A. V. Christiansen, J. A. Westergaard, C. Kirkegaard, N. Foged, and A. Viezzoli, 2009, An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system: Exploration Geophysics, 40, 184–192, doi: 10.1071/EG08128.CrossrefWeb of ScienceGoogle Scholar
  • Bedrosian, P., C. Schamper, and E. Auken, 2015, A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies: Geophysical Prospecting, 64, 192–215, doi: 10.1111/1365-2478.12262.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Binley, A., 2015, 11.08 Tools and techniques: Electrical methods, treatise on geophysics: Elsevier.Google Scholar
  • Bouwer, H., 2002, Artificial recharge of groundwater: Hydrogeology and engineering: Hydrogeology Journal, 10, 121–142, doi: 10.1007/s10040-001-0182-4.CrossrefWeb of ScienceGoogle Scholar
  • Christiansen, A., J. B. Pedersen, E. Auken, N. E. Søe, M. K. Holst, and S. M. Kristiansen, 2016, Improved geoarchaeological mapping with electromagnetic induction instruments from dedicated processing and inversion: Remote Sensing, 8, 1022, doi: 10.3390/rs8121022.RSEND3CrossrefWeb of ScienceGoogle Scholar
  • Christiansen, A. V., and E. Auken, 2012, A global measure for depth of investigation: Geophysics, 77, no. 4, WB171–WB177, doi: 10.1190/geo2011-0393.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Christiansen, A. V., E. Auken, and A. Viezzoli, 2011, Quantification of modeling errors in airborne TEM caused by inaccurate system description: Geophysics, 76, no. 1, F43–F52, doi: 10.1190/1.3511354.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Christensen, N. B., 2014, Sensitivity functions of transient electromagnetic methods: Geophysics, 79, no. 4, E167–E182, doi: 10.1190/geo2013-0364.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Christensen, N. B., and K. I. Sørensen, 2001, Pulled array continuous electrical sounding with an additional inductive source: An experimental design study: Geophysical Prospecting, 49, 241–254, doi: 10.1046/j.1365-2478.2001.00257.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Dahlin, T., C. Bernstone, and M. H. Loke, 2002, A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden: Geophysics, 67, 1692–1700, doi: 10.1190/1.1527070.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fitterman, D. V., 2015, 11.10 Tools and techniques: Active-source electromagnetic methods, treatise on geophysics: Elsevier.Google Scholar
  • Focazio, M. J., 2002, Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers: U.S. Dept. of the Interior, U.S. Geological Survey 1224.Google Scholar
  • Foged, N., E. Auken, A. V. Christiansen, and K. I. Sørensen, 2013, Test site calibration and validation of airborne and ground based TEM systems: Geophysics, 78, no. 2, E95–E106, doi: 10.1190/geo2012-0244.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Garman, K. M., and S. F. Purcell, 2004, Applications for capacitively coupled resistivity surveys in Florida: The Leading Edge, 23, 697–698, doi: 10.1190/1.1776744.AbstractGoogle Scholar
  • Harris, B. D., P. G. Wilkes, and A. Kepic, 2006, Acquisition of very early time transient electromagnetic data for shallow geotechnical, environmental and hydrogelogical applications: Symposium on the Application of Geophysics to Engineering and Environmental Problems, 631–638.AbstractGoogle Scholar
  • Ibe, K., G. Nwankwor, and S. Onyekuru, 2001, Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri, Southeastern Nigeria: Environmental Monitoring and Assessment, 67, 323–360, doi: 10.1023/A:1006358030562.EMASDH0167-6369CrossrefWeb of ScienceGoogle Scholar
  • Kirkegaard, C., N. Foged, E. Auken, A. V. Christiansen, and K. I. Sørensen, 2012, On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments: Journal of Applied Geophysics, 84, 61–69, doi: 10.1016/j.jappgeo.2012.06.006.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Loke, M. H., J. E. Chambers, D. F. Rucker, O. Kuras, and P. B. Wilkinson, 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95, 135–156, doi: 10.1016/j.jappgeo.2013.02.017.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Look, B. G., 2014, Handbook of geotechnical investigation and design tables: CRC Press.CrossrefGoogle Scholar
  • Macnae, J. C., Y. Lamontagne, and G. F. West, 1984, Noise processing techniques for time-domain EM systems: Geophysics, 49, 934–948, doi: 10.1190/1.1441739.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Maurya, P. K., V. K. Rønde, G. Fiandaca, N. Balbarini, E. Auken, P. L. Bjerg, and A. V. Christiansen, 2017, Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography-with correlation to ionic strength measured in screens: Journal of Applied Geophysics, 138, 1–8, doi: 10.1016/j.jappgeo.2017.01.019.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Mayer, C. J., and C. T. Somerville, 2000, Land use regulation and new construction: Regional Science and Urban Economics, 30, 639–662, doi: 10.1016/S0166-0462(00)00055-7.RSUEDMCrossrefWeb of ScienceGoogle Scholar
  • Møller, I., V. H. Søndergaard, and F. Jørgensen, 2009, Geophysical methods and data administration in Danish groundwater mapping: Geological Survey of Denmark and Greenland Bulletin, 17, 41–44.CrossrefGoogle Scholar
  • Nyboe, N. S., F. Jørgensen, and K. I. Sørensen, 2010, Integrated inversion of TEM and seismic data facilitated by high penetration depths of a segmented receiver setup: Near Surface Geophysics, 8, 467–473, doi: 10.3997/1873-0604.2010026.CrossrefWeb of ScienceGoogle Scholar
  • Nyboe, N. S., and K. I. Sørensen, 2012, Noise reduction in TEM: Presenting a bandwidth- and sensitivity-optimized parallel recording setup and methods for adaptive synchronous detection: Geophysics, 77, no. 3, E203–E212, doi: 10.1190/geo2011-0247.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Saey, T., M. Van Meirvenne, P. De Smedt, B. Stichelbaut, S. Delefortrie, E. Baldwin, and V. Gaffney, 2015, Combining EMI and GPR for non-invasive soil sensing at the Stonehenge World Heritage site: The reconstruction of a WW1 practice trench: European Journal of Soil Science, 66, 166–178, doi: 10.1111/ejss.12177.ESOSES1351-0754CrossrefWeb of ScienceGoogle Scholar
  • Schamper, C., E. Auken, and K. I. Sørensen, 2014a, Coil response inversion for very early time modeling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers: Geophysical Prospecting, 62, 658–674, doi: 10.1111/1365-2478.12104.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Schamper, C., F. Jørgensen, E. Auken, and F. Effersø, 2014b, Assessment of near-surface mapping capabilities by airborne transient electromagnetic data: An extensive comparison to conventional borehole data: Geophysics, 79, no. 4, B187–B199, doi: 10.1190/geo2013-0256.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sophocleous, M., 2002, Interactions between groundwater and surface water: The state of the science: Hydrogeology Journal, 10, 52–67, doi: 10.1007/s10040-001-0170-8.CrossrefWeb of ScienceGoogle Scholar
  • Sørensen, K. I., 1996, Pulled array continuous electrical profiling: First Break, 14, 85–90.CrossrefGoogle Scholar
  • Sørensen, K. I., 1997, The pulled array transient electromagnetic method: Proceedings of the 3rd Meeting of the Environmental and Engineering Geophysical Society, European Section, 135–138.Google Scholar
  • Sørensen, K. I., and E. Auken, 2004, SkyTEM: A new high-resolution helicopter transient electromagnetic system: Exploration Geophysics, 35, 191–199.CrossrefWeb of ScienceGoogle Scholar
  • Viezzoli, A., E. Auken, and T. Munday, 2009, Spatially constrained inversion for quasi 3D modeling of airborne electromagnetic data: An application for environmental assessment in the lower Murray region of South Australia: Exploration Geophysics, 40, 173–183, doi: 10.1071/EG08027.CrossrefWeb of ScienceGoogle Scholar
  • Vignoli, G., G. Fiandaca, A. V. Christiansen, C. Kirkegaard, and E. Auken, 2015, Sharp spatially constrained inversion with applications to transient electromagnetic data: Geophysical Prospecting, 63, 243–255, doi: 10.1111/1365-2478.12185.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar