This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


A hybrid finite-difference/low-rank solution to anisotropy acoustic wave equations


P-wave extrapolation in anisotropic media suffers from SV-wave artifacts and computational dependency on the complexity of anisotropy. The anisotropic pseudodifferential wave equation cannot be solved using an efficient time-domain finite-difference (FD) scheme directly. The wavenumber domain allows us to handle pseudodifferential operators accurately; however, it requires either smoothly varying media or more computational resources. In the limit of elliptical anisotropy, the pseudodifferential operator reduces to a conventional operator. Therefore, we have developed a hybrid-domain solution that includes a space-domain FD solver for the elliptical anisotropic part of the anisotropic operator and a wavenumber-domain low-rank scheme to solve the pseudodifferential part. Thus, we split the original pseudodifferential operator into a second-order differentiable background and a pseudodifferential correction term. The background equation is solved using the efficient FD scheme, and the correction term is approximated by the low-rank approximation. As a result, the correction wavefield is independent of the velocity model, and, thus, it has a reduced rank compared with the full operator. The total computation cost of our method includes the cost of solving a spatial FD time-step update plus several fast Fourier transforms related to the rank. The accuracy of our method is of the order of the FD scheme. Applications to a simple homogeneous tilted transverse isotropic (TTI) medium and modified BP TTI models demonstrate the effectiveness of the approach.


  • Alkhalifah, T., 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63, 623–631, doi: 10.1190/1.1444361.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media: Geophysics, 65, 1239–1250, doi: 10.1190/1.1444815.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., X. Ma, U. bin Waheed, and M. Zuberi, 2013, Efficient anisotropic wavefield extrapolation using effective isotropic models: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.1190/sbgf2013-315.AbstractGoogle Scholar
  • Bakker, P. M., and E. Duveneck, 2011, Stability analysis for acoustic wave propagation in tilted TI media by finite differences: Geophysical Journal International, 185, 911–921, doi: 10.1111/j.1365-246X.2011.04986.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Etgen, J., S. H. Gray, and Y. Zhang, 2009, An overview of depth imaging in exploration geophysics: Geophysics, 74, no. 6, WCA5–WCA17, doi: 10.1190/1.3223188.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fletcher, R., X. Du, and P. J. Fowler, 2008, A new pseudo-acoustic wave equation for TI media: 78th Annual International Meeting, SEG, Expanded Abstracts, 2082–2086, doi: 10.1190/1.3059301.AbstractGoogle Scholar
  • Fomel, S., L. Ying, and X. Song, 2013, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting, 61, 526–536, doi: 10.1111/j.1365-2478.2012.01064.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Grechka, V., L. Zhang, and J. W. Rector III, 2004, Shear waves in acoustic anisotropic media: Geophysics, 69, 576–582, doi: 10.1190/1.1707077.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Han, Q., and R.-S. Wu, 2003, One-way dual-domain propagators for scalar P-wave in VTI media: 73rd Annual International Meeting, SEG, Expanded Abstracts, 157–160, doi: 10.1190/1.1817600.AbstractGoogle Scholar
  • Komatitsch, D., and J. Tromp, 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophysical Journal International, 154, 146–153, doi: 10.1046/j.1365-246X.2003.01950.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Kosloff, R., and D. Kosloff, 1986, Absorbing boundaries for wave propagation problems: Journal of Computational Physics, 63, 363–376, doi: 10.1016/0021-9991(86)90199-3.JCTPAH0021-9991CrossrefWeb of ScienceGoogle Scholar
  • Li, V., H. Wang, I. Tsvankin, E. Díaz, and T. Alkhalifah, 2017, Inversion gradients for acoustic VTI wavefield tomography: Geophysics, 82, no. 4, WA55–WA65, doi: 10.1190/geo2016-0624.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Liu, F., S. A. Morton, S. Jiang, L. Ni, and J. P. Leveille, 2009, Decoupled wave equations for P and SV waves in an acoustic VTI media: 79th Annual International Meeting, SEG, Expanded Abstracts, 2844–2848, doi: 10.1190/1.3255440.AbstractGoogle Scholar
  • Liu, Y., and M. K. Sen, 2010, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme: Geophysics, 75, no. 3, A11–A17, doi: 10.1190/1.3374477.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Operto, S., J. Virieux, A. Ribodetti, and J. E. Anderson, 2009, Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media: Geophysics, 74, no. 5, T75–T95, doi: 10.1190/1.3157243.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Rao, Y., Y. Wang, Z. Zhang, Y. Ning, X. Chen, and J. Li, 2016, Reflection seismic waveform tomography of physical modelling data: Journal of Geophysics and Engineering, 13, 146–151, doi: 10.1088/1742-2132/13/2/146.CrossrefWeb of ScienceGoogle Scholar
  • Song, X., S. Fomel, and L. Ying, 2013, Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation: Geophysical Journal International, 193, 960–969, doi: 10.1093/gji/ggt017.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Sun, J., S. Fomel, and L. Ying, 2015, Low-rank one-step wave extrapolation for reverse time migration: Geophysics, 81, no. 1, S39–S54, doi: 10.1190/geo2015-0183.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wang, H., and I. Tsvankin, 2016, Feasibility of waveform inversion in acoustic orthorhombic media: 86th Annual International Meeting, SEG, Expanded Abstracts, 311–316, doi: 10.1190/segam2016-13965913.1.AbstractGoogle Scholar
  • Wu, Z., and T. Alkhalifah, 2014, The optimized expansion based low-rank method for wavefield extrapolation: Geophysics, 79, no. 2, T51–T60, doi: 10.1190/geo2013-0174.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wu, Z., and T. Alkhalifah, 2017, An efficient Helmholtz solver for acoustic transversely isotropic media: Geophysics, 83, no. 2, C75–C83, doi: 10.1190/geo2017-0618.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wu, Z., and T. Alkhalifah, 2018, A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation: Journal of Computational Physics, 365, 350–361, doi: 10.1016/ of ScienceGoogle Scholar
  • Xu, S., and H. Zhou, 2014, Accurate simulations of pure quasi-P-waves in complex anisotropic media: Geophysics, 79, no. 6, T341–T348, doi: 10.1190/geo2014-0242.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhan, G., R. C. Pestana, and P. L. Stoffa, 2013, An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation: Journal of Geophysics and Engineering, 10, 025004, doi: 10.1088/1742-2132/10/2/025004.CrossrefWeb of ScienceGoogle Scholar
  • Zhang, L., J. W. Rector, and G. M. Hoversten, 2005, Finite-difference modelling of wave propagation in acoustic tilted TI media: Geophysical Prospecting, 53, 843–852, doi: 10.1111/j.1365-2478.2005.00504.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Zhang, Y., H. Zhang, and G. Zhang, 2011, A stable TTI reverse time migration and its implementation: Geophysics, 76, no. 3, WA3–WA11, doi: 10.1190/1.3554411.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhang, Z., and T. Alkhalifah, 2016, Efficient quasi-P wavefield extrapolation using an isotropic lowrank approximation: 78th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201600814.CrossrefGoogle Scholar
  • Zhang, Z.-D., and T. Alkhalifah, 2017, Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media: Geophysical Prospecting, 65, 166–180, doi: 10.1111/1365-2478.12560.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Zhang, Z.-D., Y. Liu, T. Alkhalifah, and Z. Wu, 2017, Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation: Geophysical Journal International, 213, 48–57, doi: 10.1093/gji/ggx543.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Zhou, H., G. Zhang, and R. Bloor, 2006, An anisotropic acoustic wave equation for modeling and migration in 2D TTI media: 76th Annual International Meeting, SEG, Expanded Abstracts, 194–198, doi: 10.1190/1.2369913.AbstractGoogle Scholar