ABSTRACT
P-wave extrapolation in anisotropic media suffers from SV-wave artifacts and computational dependency on the complexity of anisotropy. The anisotropic pseudodifferential wave equation cannot be solved using an efficient time-domain finite-difference (FD) scheme directly. The wavenumber domain allows us to handle pseudodifferential operators accurately; however, it requires either smoothly varying media or more computational resources. In the limit of elliptical anisotropy, the pseudodifferential operator reduces to a conventional operator. Therefore, we have developed a hybrid-domain solution that includes a space-domain FD solver for the elliptical anisotropic part of the anisotropic operator and a wavenumber-domain low-rank scheme to solve the pseudodifferential part. Thus, we split the original pseudodifferential operator into a second-order differentiable background and a pseudodifferential correction term. The background equation is solved using the efficient FD scheme, and the correction term is approximated by the low-rank approximation. As a result, the correction wavefield is independent of the velocity model, and, thus, it has a reduced rank compared with the full operator. The total computation cost of our method includes the cost of solving a spatial FD time-step update plus several fast Fourier transforms related to the rank. The accuracy of our method is of the order of the FD scheme. Applications to a simple homogeneous tilted transverse isotropic (TTI) medium and modified BP TTI models demonstrate the effectiveness of the approach.
REFERENCES
- 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63,
623–631 , doi:10.1190/1.1444361 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2000, An acoustic wave equation for anisotropic media: Geophysics, 65,
1239–1250 , doi:10.1190/1.1444815 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2013, Efficient anisotropic wavefield extrapolation using effective isotropic models:
75th Annual International Conference and Exhibition, EAGE , Extended Abstracts, doi:10.1190/sbgf2013-315 .AbstractGoogle Scholar , - 2011, Stability analysis for acoustic wave propagation in tilted TI media by finite differences: Geophysical Journal International, 185,
911–921 , doi:10.1111/j.1365-246X.2011.04986.x .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 2009, An overview of depth imaging in exploration geophysics: Geophysics, 74, no. 6,
WCA5–WCA17 , doi:10.1190/1.3223188 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2008, A new pseudo-acoustic wave equation for TI media:
78th Annual International Meeting, SEG , Expanded Abstracts,2082–2086 , doi:10.1190/1.3059301 .AbstractGoogle Scholar , - 2013, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting, 61,
526–536 , doi:10.1111/j.1365-2478.2012.01064.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2004, Shear waves in acoustic anisotropic media: Geophysics, 69,
576–582 , doi:10.1190/1.1707077 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2003, One-way dual-domain propagators for scalar P-wave in VTI media:
73rd Annual International Meeting, SEG , Expanded Abstracts,157–160 , doi:10.1190/1.1817600 .AbstractGoogle Scholar , - 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophysical Journal International, 154,
146–153 , doi:10.1046/j.1365-246X.2003.01950.x .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 1986, Absorbing boundaries for wave propagation problems: Journal of Computational Physics, 63,
363–376 , doi:10.1016/0021-9991(86)90199-3 .JCTPAH 0021-9991 CrossrefWeb of ScienceGoogle Scholar , - 2017, Inversion gradients for acoustic VTI wavefield tomography: Geophysics, 82, no. 4,
WA55–WA65 , doi:10.1190/geo2016-0624.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, Decoupled wave equations for P and SV waves in an acoustic VTI media:
79th Annual International Meeting, SEG , Expanded Abstracts,2844–2848 , doi:10.1190/1.3255440 .AbstractGoogle Scholar , - 2010, Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme: Geophysics, 75, no. 3,
A11–A17 , doi:10.1190/1.3374477 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media: Geophysics, 74, no. 5,
T75–T95 , doi:10.1190/1.3157243 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2016, Reflection seismic waveform tomography of physical modelling data: Journal of Geophysics and Engineering, 13,
146–151 , doi:10.1088/1742-2132/13/2/146 .CrossrefWeb of ScienceGoogle Scholar , - 2013, Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation: Geophysical Journal International, 193,
960–969 , doi:10.1093/gji/ggt017 .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 2015, Low-rank one-step wave extrapolation for reverse time migration: Geophysics, 81, no. 1,
S39–S54 , doi:10.1190/geo2015-0183.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2016, Feasibility of waveform inversion in acoustic orthorhombic media:
86th Annual International Meeting, SEG , Expanded Abstracts,311–316 , doi:10.1190/segam2016-13965913.1 .AbstractGoogle Scholar , - 2014, The optimized expansion based low-rank method for wavefield extrapolation: Geophysics, 79, no. 2,
T51–T60 , doi:10.1190/geo2013-0174.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2017, An efficient Helmholtz solver for acoustic transversely isotropic media: Geophysics, 83, no. 2,
C75–C83 , doi:10.1190/geo2017-0618.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2018, A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation: Journal of Computational Physics, 365,
350–361 , doi:10.1016/j.jcp.2018.03.046 .JCTPAH 0021-9991 CrossrefWeb of ScienceGoogle Scholar , - 2014, Accurate simulations of pure quasi-P-waves in complex anisotropic media: Geophysics, 79, no. 6,
T341–T348 , doi:10.1190/geo2014-0242.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2013, An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation: Journal of Geophysics and Engineering, 10,
025004 , doi:10.1088/1742-2132/10/2/025004 .CrossrefWeb of ScienceGoogle Scholar , - 2005, Finite-difference modelling of wave propagation in acoustic tilted TI media: Geophysical Prospecting, 53,
843–852 , doi:10.1111/j.1365-2478.2005.00504.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2011, A stable TTI reverse time migration and its implementation: Geophysics, 76, no. 3,
WA3–WA11 , doi:10.1190/1.3554411 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2016, Efficient quasi-P wavefield extrapolation using an isotropic lowrank approximation:
78th Annual International Conference and Exhibition, EAGE , Extended Abstracts, doi:10.3997/2214-4609.201600814 .CrossrefGoogle Scholar , - 2017, Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media: Geophysical Prospecting, 65,
166–180 , doi:10.1111/1365-2478.12560 .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2017, Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation: Geophysical Journal International, 213,
48–57 , doi:10.1093/gji/ggx543 .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 2006, An anisotropic acoustic wave equation for modeling and migration in 2D TTI media:
76th Annual International Meeting, SEG , Expanded Abstracts,194–198 , doi:10.1190/1.2369913 .AbstractGoogle Scholar ,