This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Applications of low-rank compressed seismic data to full-waveform inversion and extended image volumes

Authors:

Conventional oil and gas fields are increasingly difficult to explore and image, resulting in the call for more complex wave-equation-based inversion algorithms that require dense long-offset samplings. Consequently, there is an exponential growth in the size of data volumes and prohibitive demands on computational resources. We have developed a method to compress and process seismic data directly in a low-rank tensor format, which drastically reduces the amount of storage required to represent the data. Seismic data exhibit a low-rank structure in a particular transform domain, which can be exploited to compress the dense data in one extremely storage-efficient tensor format when the data are fully sampled or can be interpolated when the data have missing entries. In either case, once our data are represented in the compressed tensor form, we have developed an algorithm to extract source or receiver gathers directly from the compressed parameters. This extraction process can be done on the fly directly on the compressed data, and it does not require scanning through the entire data set to form shot gathers. We apply this shot-extraction technique in the context of stochastic full-waveform inversion as well as forming full subsurface image gathers through probing techniques and reveal the minor differences between using the full and compressed data, while drastically reducing the total memory costs.

REFERENCES

  • Abubakar, A., M. Li, Y. Lin, and T. M. Habashy, 2012, Compressed implicit Jacobian scheme for elastic full-waveform inversion: Geophysical Journal International, 189, 1626–1634, doi: 10.1111/j.1365-246x.2012.05439.x.GJINEA0956-540X
  • Aki, K., and P. G. Richards, 2002, Quantitative seismology: Freeman and Co.
  • Aminzadeh, F., B. Jean, and T. Kunz, 1997, 3-D salt and overthrust models: SEG.
  • Aravkin, A., R. Kumar, H. Mansour, B. Recht, and F. J. Herrmann, 2014, Fast methods for denoising matrix completion formulations, with applications to robust seismic data interpolation: SIAM Journal on Scientific Computing, 36, S237–S266, doi: 10.1137/130919210.SJOCE31064-8275
  • Bekara, M., and M. Van der Baan, 2007, Local singular value decomposition for signal enhancement of seismic data: Geophysics, 72, no. 2, V59–V65, doi: 10.1190/1.2435967.GPYSA70016-8033
  • Biondi, B., and P. Sava, 1999, Wave-equation migration velocity analysis: 66th Annual International Meeting, SEG, Expanded Abstracts, 1723–1726, doi: 10.3997/2214-4609.201405675.
  • Biondi, B., and W. W. Symes, 2004, Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging: Geophysics, 69, 1283–1298, doi: 10.1190/1.1801945.GPYSA70016-8033
  • Boutsidis, C., and D. Woodruff, 2017, Optimal cur matrix decompositions: SIAM Journal on Computing, 46, 543–589, doi: 10.1137/140977898.SMJCAT0097-5397
  • Candes, E., L. Demanet, D. Donoho, and L. Ying, 2006, Fast discrete curvelet transforms: Multiscale Modeling and Simulation, 5, 861–899, doi: 10.1137/05064182X.
  • Candès, E. J., and B. Recht, 2009, Exact matrix completion via convex optimization: Foundations of Computational Mathematics, 9, 717–772, doi: 10.1007/s10208-009-9045-5.1615-3375
  • Candès, E. J., and T. Tao, 2010, The power of convex relaxation: Near-optimal matrix completion: IEEE Transactions on Information Theory, 56, 2053–2080, doi: 10.1109/TIT.2010.2044061.IETTAW0018-9448
  • Carroll, J. D., and J.-J. Chang, 1970, Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-young” decomposition: Psychometrika, 35, 283–319, doi: 10.1007/BF02310791.0033-3123
  • Cheng, J., and M. D. Sacchi, 2015, Separation and reconstruction of simultaneous source data via iterative rank reduction: Geophysics, 80, no. 4, V57–V66, doi: 10.1190/geo2014-0385.1.GPYSA70016-8033
  • Claerbout, J. F., 1970, Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure: Geophysics, 35, 407–418, doi: 10.1190/1.1440103.GPYSA70016-8033
  • Curry, W., 2010, Interpolation with Fourier-radial adaptive thresholding: Geophysics, 75, no. 6, WB95–WB102, doi: 10.1190/1.3500977.GPYSA70016-8033
  • Da Silva, C., and F. J. Herrmann, 2013, Hierarchical Tucker tensor optimization: Applications to 4D seismic data interpolation: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20130390.
  • Da Silva, C., and F. J. Herrmann, 2014, Low-rank promoting transformations and tensor interpolation: Applications to seismic data denoising: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20141393.
  • Da Silva, C., and F. J. Herrmann, 2015, Optimization on the hierarchical Tucker manifold: Applications to tensor completion: Linear Algebra and its Applications, 481, 131–173, doi: 10.1016/j.laa.2015.04.015.LAAPAW0024-3795
  • Da Silva, C., and F. J. Herrmann, 2016, A unified 2D/3D software environment for large-scale time-harmonic full-waveform inversion: 76th Annual International Meeting, SEG, Expanded Abstracts, 1169–1173, doi: 10.1190/segam2016-13869051.1.
  • De Bruin, C., C. Wapenaar, and A. Berkhout, 1990, Angle-dependent reflectivity by means of prestack migration: Geophysics, 55, 1223–1234, doi: 10.1190/1.1442938.GPYSA70016-8033
  • De Lathauwer, L., B. De Moor, and J. Vandewalle, 2000, A multilinear singular value decomposition: SIAM Journal on Matrix Analysis and Applications, 21, 1253–1278, doi: 10.1137/S0895479896305696.SJMAEL0895-4798
  • Demanet, L., 2006, Curvelets, wave atoms, and wave equations: Ph.D. thesis, California Institute of Technology.
  • Doherty, S., and J. Claerbout, 1974, Velocity analysis based on the wave equation: 25 Technical Report 1, Stanford Exploration Project.
  • Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52, 1289–1306, doi: 10.1109/TIT.2006.871582.IETTAW0018-9448
  • Freire, S. L., and T. J. Ulrych, 1988, Application of singular value decomposition to vertical seismic profiling: Geophysics, 53, 778–785, doi: 10.1190/1.1442513.GPYSA70016-8033
  • Gower, R., D. Goldfarb, and P. Richtárik, 2016, Stochastic block BFGS: Squeezing more curvature out of data: International Conference on Machine Learning, 1869–1878.
  • Grasedyck, L., 2010, Hierarchical singular value decomposition of tensors: SIAM Journal on Matrix Analysis and Applications, 31, 2029–2054, doi: 10.1137/090764189.SJMAEL0895-4798
  • Hackbusch, W., and S. Kühn, 2009, A new scheme for the tensor representation: Journal of Fourier Analysis and Applications, 15, 706–722, doi: 10.1007/s00041-009-9094-9.
  • Hennenfent, G., and F. J. Herrmann, 2006, Application of stable signal recovery to seismic data interpolation: 76th Annual International Meeting, SEG, Expanded Abstracts, 2797–2801, doi: 10.1190/1.2370105.
  • Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173, 233–248, doi: 10.1111/j.1365-246x.2007.03698.x.GJINEA0956-540X
  • Herrmann, F. J., D. Wang, G. Hennenfent, and P. P. Moghaddam, 2007, Curvelet-based seismic data processing: A multiscale and nonlinear approach: Geophysics, 73, no. 1, A1–A5, doi: 10.1190/1.2799517.GPYSA70016-8033
  • Jumah, B., and F. J. Herrmann, 2014, Dimensionality-reduced estimation of primaries by sparse inversion: Geophysical Prospecting, 62, 972–993, doi: 10.1111/1365-2478.12113.GPPRAR0016-8025
  • Kabir, M. N., and D. Verschuur, 1995, Restoration of missing offsets by parabolic radon transform: Geophysical Prospecting, 43, 347–368, doi: 10.1111/j.1365-2478.1995.tb00257.x.GPPRAR0016-8025
  • Koren, Z., and I. Ravve, 2011, Full-azimuth subsurface angle domain wavefield decomposition and imaging. Part I: Directional and reflection image gathers: Geophysics, 76, no. 1, S1–S13, doi: 10.1190/1.3511352.GPYSA70016-8033
  • Kreimer, N., and M. D. Sacchi, 2012, A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation: Geophysics, 77, no. 3, V113–V122, doi: 10.1190/geo2011-0399.1.GPYSA70016-8033
  • Kreimer, N., A. Stanton, and M. D. Sacchi, 2013, Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction: Geophysics, 78, no. 6, V273–V284, doi: 10.1190/geo2013-0022.1.GPYSA70016-8033
  • Kumar, R., H. Mansour, A. Y. Aravkin, and F. J. Herrmann, 2013, Reconstruction of seismic wavefields via low-rank matrix factorization in the hierarchical-separable matrix representation: 83rd Annual International Meeting, SEG, Expanded Abstracts, 3628–3633, doi: 10.1190/segam2013-1165.1.
  • Kumar, R., S. Sharan, H. Wason, and F. J. Herrmann, 2016, Time-jittered marine acquisition: A rank-minimization approach for 5D source separation: 86th Annual International Meeting, SEG, Expanded Abstracts, 119–123, doi: 10.1190/segam2016-13878249.1.
  • Kumar, R., C. D. Silva, O. Akalin, A. Y. Aravkin, H. Mansour, B. Recht, and F. J. Herrmann, 2015, Efficient matrix completion for seismic data reconstruction: Geophysics, 80, no. 5, V97–V114, doi: 10.1190/geo2014-0369.1.GPYSA70016-8033
  • Li, M., A. Abubakar, J. Liu, G. Pan, and T. M. Habashy, 2011, A compressed implicit Jacobian scheme for 3D electromagnetic data inversion: Geophysics, 76, no. 3, F173–F183, doi: 10.1190/1.3569482.GPYSA70016-8033
  • Ma, J., 2013, Three-dimensional irregular seismic data reconstruction via low-rank matrix completion: Geophysics, 78, no. 5, V181–V192, doi: 10.1190/geo2012-0465.1.GPYSA70016-8033
  • Mokhtari, A., Q. Ling, and A. Ribeiro, 2015, An approximate Newton method for distributed optimization: IEEE International Conference on Acoustics, Speech and Signal Processing, 2959–2963.
  • Moritz, P., R. Nishihara, and M. Jordan, 2016, A linearly-convergent stochastic L-BFGS algorithm: Proceedings of the Artificial Intelligence and Statistics, 249–258.
  • Nazari Siahsar, M. A., S. Gholtashi, A. R. Kahoo, H. Marvi, and A. Ahmadifard, 2016, Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition: Geophysics, 81, no. 2, V117–V124, doi: 10.1190/geo2015-0341.1.GPYSA70016-8033
  • Oropeza, V., and M. Sacchi, 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis: Geophysics, 76, no. 3, V25–V32, doi: 10.1190/1.3552706.GPYSA70016-8033
  • Recht, B., 2011, A simpler approach to matrix completion: Journal of Machine Learning Research, 12, 3413–3430.
  • Sacchi, M., S. Kaplan, and M. Naghizadeh, 2009, FX Gabor seismic data reconstruction: 71st Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201400441.
  • Sava, P., and I. Vasconcelos, 2011, Extended imaging conditions for wave-equation migration: Geophysical Prospecting, 59, 35–55, doi: 10.1111/j.1365-2478.2010.00888.x.GPPRAR0016-8025
  • Schmidt, M. W., E. Van Den Berg, M. P. Friedlander, and K. P. Murphy, 2009, Optimizing costly functions with simple constraints: A limited-memory projected Quasi-Newton algorithm: 12th International Conference on Artificial Intelligence and Statistics, 456–463.
  • Stork, C., 1992, Singular value decomposition of the velocity-reflector depth tradeoff. Part 2: High-resolution analysis of a generic model: Geophysics, 57, 933–943, doi: 10.1190/1.1443306.GPYSA70016-8033
  • Tobler, C., 2012, Low-rank tensor methods for linear systems and eigenvalue problems: Ph.D. thesis, ETH Zürich.
  • Trickett, S., L. Burroughs, and A. Milton, 2013, Interpolation using Hankel tensor completion: Ratio, 1, 16.
  • Trickett, S., L. Burroughs, A. Milton, L. Walton, and R. Dack, 2010, Rank-reduction-based trace interpolation: 80th Annual International Meeting, SEG, Expanded Abstracts, 3829–3833, doi: 10.1190/1.3513645.
  • van Leeuwen, T., R. Kumar, and F. J. Herrmann, 2016, Enabling affordable omnidirectional subsurface extended image volumes via probing: Geophysical Prospecting, 65, 385–406, doi: 10.1111/1365-2478.12418.GPPRAR0016-8025
  • Villasenor, J. D., R. Ergas, and P. Donoho, 1996, Seismic data compression using high dimensional wavelet transforms: IEEE Data Compression Conference, 396–405.
  • Wang, J., M. Ng, and M. Perz, 2010, Seismic data interpolation by Greedy local Radon transform: Geophysics, 75, no. 6, WB225–WB234, doi: 10.1190/1.3484195.GPYSA70016-8033
  • Ying, L., L. Demanet, and E. Candes, 2005, 3D discrete curvelet transform: Proceedings of SPIE, 5914, 591413, doi: 10.1117/12.616205.