This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

A tool for designing digital filters for the Hankel and Fourier transforms in potential, diffusive, and wavefield modeling

Authors:

The open-source code fdesign makes it possible to design digital linear filters for the Hankel and Fourier transforms used in potential, diffusive, and wavefield modeling. Digital filters can be derived for any electromagnetic (EM) method, such as methods in the diffusive limits (direct current, controlled-source EM [CSEM]) as well as methods using higher frequency content (ground-penetrating radar [GPR], acoustic and elastic wavefields). The direct matrix inversion method is used for the derivation of the filter values, and a brute-force minimization search is carried out over the defined spacing and shifting values of the filter basis. Included or user-provided theoretical transform pairs are used for the inversion. Alternatively, one can provide layered subsurface models that will be computed with a precise quadrature method using the EM modeler empymod to generate numerical transform pairs. The comparison of the presented 201 pt filter with previously presented filters indicates that it performs better for some standard CSEM cases. The derivation of a longer 2001 pt filter for a GPR example with a 250 MHz center frequency proves that the filter method works not only for diffusive EM fields but also for wave phenomena. The presented algorithm provides a tool to create problem specific digital filters. Such purpose-built filters can be made shorter and can speed up consecutive potential, diffusive, and wavefield inversions.

REFERENCES

  • Anderson, W. L., 1973, Fortran IV programs for the determination of the transient tangential electric field and vertical magnetic field about a vertical magnetic dipole for an m-layer stratified earth by numerical integration and digital linear filtering: USGS, PB221240, https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB221240.xhtml, accessed 25 July 2017.Google Scholar
  • Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals: USGS, PB242800, https://pubs.er.usgs.gov/publication/70045426, accessed 15 February 2016.Google Scholar
  • Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering: Geophysics, 44, 1287–1305, doi: 10.1190/1.1441007.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM Transactions on Mathematical Software, 8, 344–368, doi: 10.1145/356012.356014.ACMSCU0098-3500CrossrefWeb of ScienceGoogle Scholar
  • Anderson, W. L., 1984, On: “Numerical integration of related Hankel transforms by quadrature and continued fraction expansion” by A. D. Chave: Geophysics, 49, 1811–1812, doi: 10.1190/1.1441595.AbstractWeb of ScienceGoogle Scholar
  • Anderson, W. L., 1989, A hybrid fast Hankel transform algorithm for electromagnetic modeling: Geophysics, 54, 263–266, doi: 10.1190/1.1442650.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bernabini, M., and E. Cardarelli, 1978, The use of filtered Bessel functions in direct interpretation of geoelectrical soundings: Geophysical Prospecting, 26, 841–852, doi: 10.1111/j.1365-2478.1978.tb01636.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Bichara, M., and J. Lakshmanan, 1976, Fast automatic processing of resistivity soundings: Geophysical Prospecting, 24, 354–370, doi: 10.1111/j.1365-2478.1976.tb00932.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Christensen, N. B., 1990, Optimized fast Hankel transform filters: Geophysical Prospecting, 38, 545–568, doi: 10.1111/j.1365-2478.1990.tb01861.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Das, U. C., 1982, Designing digital linear filters for computing resistivity and electromagnetic sounding curves: Geophysics, 47, 1456–1459, doi: 10.1190/1.1441295.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Das, U. C., 1984, A single digital linear filter for computations in electrical methods — A unifying approach: Geophysics, 49, 1115–1118, doi: 10.1190/1.1441726.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Das, U. C., and D. P. Ghosh, 1974, The determination of filter coefficients for the computation of standard curves for dipole resistivity sounding over layered earth by linear digital filtering: Geophysical Prospecting, 22, 765–780, doi: 10.1111/j.1365-2478.1974.tb00117.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Das, U. C., D. P. Ghosh, and D. T. Biewinga, 1974, Transformation of dipole resistivity sounding measurements over layered earth by linear digital filtering: Geophysical Prospecting, 22, 476–489, doi: 10.1111/j.1365-2478.1974.tb00100.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Das, U. C., and S. K. Verma, 1980, Digital linear filter for computing type curves for the two-electrode system of resistivity sounding: Geophysical Prospecting, 28, 610–619, doi: 10.1111/j.1365-2478.1980.tb01246.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Das, U. C., and S. K. Verma, 1981a, Numerical considerations on computing the EM response of three-dimensional inhomogeneities in a layered earth: Geophysical Journal International, 66, 733–740, doi: 10.1111/j.1365-246X.1981.tb04897.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Das, U. C., and S. K. Verma, 1981b, The versatility of digital linear filters used in computing resistivity and EM sounding curves: Geoexploration, 18, 297–310, doi: 10.1016/0016-7142(81)90059-4.GEOXAV0016-7142CrossrefGoogle Scholar
  • Das, U. C., and S. K. Verma, 1982, Electromagnetic response of an arbitrarily shaped three-dimensional conductor in a layered earth — Numerical results: Geophysical Journal International, 69, 55–66, doi: 10.1111/j.1365-246X.1982.tb04935.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Davis, P. A., S. A. Greenhalgh, and N. P. Merrick, 1980, Resistivity sounding computations with any array using a single digital filter: Exploration Geophysics, 11, 54–62, doi: 10.1071/EG980054.CrossrefGoogle Scholar
  • Ghosh, D. P., 1970, The application of linear filter theory to the direct interpretation of geoelectrical resistivity measurements: Ph.D. thesis, Delft University of Technology.Google Scholar
  • Ghosh, D. P., 1971a, The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements: Geophysical Prospecting, 19, 192–217, doi: 10.1111/j.1365-2478.1971.tb00593.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Ghosh, D. P., 1971b, Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth: Geophysical Prospecting, 19, 769–775, doi: 10.1111/j.1365-2478.1971.tb00915.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Guptasarma, D., 1982, Optimization of short digital linear filters for increased accuracy: Geophysical Prospecting, 30, 501–514, doi: 10.1111/j.1365-2478.1982.tb01320.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Guptasarma, D., and B. Singh, 1997, New digital linear filters for Hankel J0 and J1 transforms: Geophysical Prospecting, 45, 745–762, doi: 10.1046/j.1365-2478.1997.500292.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80, no. 1, F1–F18, doi: 10.1190/geo2013-0411.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Johansen, H. K., 1975, An interactive computer/graphic-display-terminal system for interpretation of resistivity soundings: Geophysical Prospecting, 23, 449–458, doi: 10.1111/j.1365-2478.1975.tb01541.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Johansen, H. K., and K. Sørensen, 1979, Fast Hankel transforms: Geophysical Prospecting, 27, 876–901, doi: 10.1111/j.1365-2478.1979.tb01005.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers: Geophysics, 74, no. 2, F9–F20, doi: 10.1190/1.3058434.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, no. 3, F21–F30, doi: 10.1190/GEO2011-0237.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Koefoed, O., 1968, The application of the kernel function in interpreting geoelectrical resistivity measurements: Gebrüder Borntraeger.Google Scholar
  • Koefoed, O., 1970, A fast method for determining the layer distribution from the raised kernel function in geoelectrical sounding: Geophysical Prospecting, 18, 564–570, doi: 10.1111/j.1365-2478.1970.tb02129.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Koefoed, O., 1972, A note on the linear filter method of interpreting resistivity sounding data: Geophysical Prospecting, 20, 403–405, doi: 10.1111/j.1365-2478.1972.tb00643.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Koefoed, O., 1976, Error propagation and uncertainty in the interpretation of resistivity sounding data: Geophysical Prospecting, 24, 31–48, doi: 10.1111/j.1365-2478.1976.tb00383.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Koefoed, O., and F. J. H. Dirks, 1979, Determination of resistivity sounding filters by the Wiener-Hopf least-squares method: Geophysical Prospecting, 27, 245–250, doi: 10.1111/j.1365-2478.1979.tb00968.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Koefoed, O., D. P. Ghosh, and G. J. Polman, 1972, Computation of type curves for electromagnetic depth sounding with a horizontal transmitting coil by means of a digital linear filter: Geophysical Prospecting, 20, 406–420, doi: 10.1111/j.1365-2478.1972.tb00644.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium: Geophysical Prospecting, 55, 83–89, doi: 10.1111/j.1365-2478.2006.00585.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Kruglyakov, M., and L. Bloshanskaya, 2017, High-performance parallel solver for integral equations of electromagnetics based on Galerkin method: Mathematical Geosciences, 49, 751–776, doi: 10.1007/s11004-017-9677-y.CrossrefWeb of ScienceGoogle Scholar
  • Kumar, R., and U. C. Das, 1977, Transformation of dipole to Schlumberger sounding curves by means of digital linear filters: Geophysical Prospecting, 25, 780–789, doi: 10.1111/j.1365-2478.1977.tb01204.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Kumar, R., and U. C. Das, 1978, Transformation of Schlumberger apparent resistivity to dipole apparent resistivity over layered earth by the application of digital linear filters: Geophysical Prospecting, 26, 352–358, doi: 10.1111/j.1365-2478.1978.tb01598.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Mohsen, A. A., and E. A. Hashish, 1994, The fast Hankel transform: Geophysical Prospecting, 42, 131–139, doi: 10.1111/j.1365-2478.1994.tb00202.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Murakami, Y., and T. Uchida, 1982, Accuracy of the linear filter coefficients determined by the iteration of the least-squares method: Geophysics, 47, 244–256, doi: 10.1190/1.1441331.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Newman, G. A., G. W. Hohmann, and W. L. Anderson, 1986, Transient electromagnetic response of a three-dimensional body in a layered earth: Geophysics, 51, 1608–1627, doi: 10.1190/1.1442212.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nissen, J., and T. Enmark, 1986, An optimized digital filter for the Fourier transform: Geophysical Prospecting, 34, 897–903, doi: 10.1111/j.1365-2478.1986.tb00500.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Niwas, S., 1975, Direct interpretation of geoelectric measurements by the use of linear filter theory: Geophysics, 40, 121–122, doi: 10.1190/1.1440510.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nyman, D. C., and M. Landisman, 1977, VES dipole-dipole filter coefficients: Geophysics, 42, 1037–1044, doi: 10.1190/1.1440763.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • O’Neill, D., 1975, Improved linear filter coefficients for application in apparent resistivity computations: Exploration Geophysics, 6, 104–109, doi: 10.1071/EG975104.CrossrefGoogle Scholar
  • O’Neill, D. J., and N. P. Merrick, 1984, A digital linear filter for resistivity sounding with a generalized electrode array: Geophysical Prospecting, 32, 105–123, doi: 10.1111/j.1365-2478.1984.tb00720.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Pekeris, C. L., 1940, Direct method of interpretation in resistivity prospecting: Geophysics, 5, 31–42, doi: 10.1190/1.1441791.GPYSA70016-8033AbstractGoogle Scholar
  • Raiche, A., F. Sugeng, and G. Wilson, 2007, Practical 3D EM inversion — The P223F software suite: ASEG Technical Program Expanded Abstracts, 1–4, doi: 10.1071/ASEG2007ab114.CrossrefGoogle Scholar
  • Slichter, L. B., 1933, The interpretation of the resistivity prospecting method for horizontal structures: Physics, 4, 307–322, doi: 10.1063/1.1745198.PHYSGM1943-2879CrossrefGoogle Scholar
  • Sørensen, K. I., and N. B. Christensen, 1994, The fields from a finite electrical dipole — A new computational approach: Geophysics, 59, 864–880, doi: 10.1190/1.1443646.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Verma, R. K., and O. Koefoed, 1973, A note on the linear filter method of computing electromagnetic sounding curves: Geophysical Prospecting, 21, 70–76, doi: 10.1111/j.1365-2478.1973.tb00015.x.GPPRAR0016-8025CrossrefGoogle Scholar
  • Ward, S. H., and G. W. Hohmann, 1988, Electromagnetic theory for geophysical applications: SEG, Investigations in Geophysics 4, 130–131.AbstractGoogle Scholar
  • Werthmüller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media in Python: empymod: Geophysics, 82, no. 6, WB9, doi: 10.1190/geo2016-0626.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar