This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Uncertainty quantification for inverse problems with weak partial-differential-equation constraints

Authors:

In statistical inverse problems, the objective is a complete statistical description of unknown parameters from noisy observations to quantify uncertainties in unknown parameters. We consider inverse problems with partial-differential-equation (PDE) constraints, which are applicable to many seismic problems. Bayesian inference is one of the most widely used approaches to precisely quantify statistics through a posterior distribution, incorporating uncertainties in observed data, modeling kernel, and prior knowledge of parameters. Typically when formulating the posterior distribution, the PDE constraints are required to be exactly satisfied, resulting in a highly nonlinear forward map and a posterior distribution with many local maxima. These drawbacks make it difficult to find an appropriate approximation for the posterior distribution. Another complicating factor is that traditional Markov chain Monte Carlo (MCMC) methods are known to converge slowly for realistically sized problems. To overcome these drawbacks, we relax the PDE constraints by introducing an auxiliary variable, which allows for Gaussian errors in the PDE and yields a bilinear posterior distribution with weak PDE constraints that is more amenable to uncertainty quantification because of its special structure. We determine that for a particular range of variance choices for the PDE misfit term, the new posterior distribution has fewer modes and can be well-approximated by a Gaussian distribution, which can then be sampled in a straightforward manner. Because it is prohibitively expensive to explicitly construct the dense covariance matrix of the Gaussian approximation for problems with more than 105 unknowns, we have developed a method to implicitly construct it, which enables efficient sampling. We apply this framework to 2D seismic inverse problems with 1800 and 92,455 unknown parameters. The results illustrate that our framework can produce comparable statistical quantities with those produced by conventional MCMC-type methods while requiring far fewer PDE solves, which are the main computational bottlenecks in these problems.

REFERENCES

  • Amestoy, P., R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, and S. Operto, 2016, Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea: Geophysics, 81, no. 6, R363–R383, doi: 10.1190/geo2016-0052.1.GPYSA70016-8033
  • Amestoy, P. R., I. S. Duff, J.-Y. L’Excellent, and J. Koster, 2001, A fully asynchronous multifrontal solver using distributed dynamic scheduling: SIAM Journal on Matrix Analysis and Applications, 23, 15–41, doi: 10.1137/S0895479899358194.SJMAEL0895-4798
  • Amestoy, P. R., A. Guermouche, J.-Y. L’Excellent, and S. Pralet, 2006, Hybrid scheduling for the parallel solution of linear systems: Parallel Computing, 32, 136–156, doi: 10.1016/j.parco.2005.07.004.PACOEJ0167-8191
  • Bardsley, J. M., A. Seppänen, A. Solonen, H. Haario, and J. Kaipio, 2015, Randomize-then-optimize for sampling and uncertainty quantification in electrical impedance tomography: SIAM/ASA Journal on Uncertainty Quantification, 3, 1136–1158, doi: 10.1137/140978272.
  • Bardsley, J. M., A. Solonen, H. Haario, and M. Laine, 2014, Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems: SIAM Journal on Scientific Computing, 36, A1895–A1910, doi: 10.1137/140964023.SJOCE31064-8275
  • Bayes, T., R. Price, and J. Canton, 1763, An essay towards solving a problem in the doctrine of chances: Philosophical Transactions, 53, 370–418, doi: 10.1098/rstl.1763.0053.
  • Biegler, L. T., T. F. Coleman, A. Conn, and F. N. Santosa, 2012, Large-scale optimization with applications. Part I: Optimization in inverse problems and design: Springer Science and Business Media.
  • Bui-Thanh, T., O. Ghattas, J. Martin, and G. Stadler, 2013, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion: SIAM Journal on Scientific Computing, 35, A2494–A2523, doi: 10.1137/12089586X.SJOCE31064-8275
  • Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1.1443880.GPYSA70016-8033
  • Chen, Y., and D. S. Oliver, 2012, Ensemble randomized maximum likelihood method as an iterative ensemble smoother: Mathematical Geosciences, 44, 1–26, doi: 10.1007/s11004-011-9376-z.
  • Chen, Z., D. Cheng, W. Feng, and T. Wu, 2013, An optimal 9-point finite difference scheme for the Helmholtz equation with PML: International Journal of Numerical Analysis and Modeling, 10, 389–410.
  • Dummit, D. S., and R. M. Foote, 2004, Abstract algebra: Wiley Hoboken.
  • Efron, B., 1981, Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods: Biometrika, 68, 589–599, doi: 10.1093/biomet/68.3.589.BIOKAX0006-3444
  • Efron, B., 1992, Bootstrap methods: Another look at the jackknife, in S. KotzN. L. Johnson, eds., Breakthroughs in statistics: Springer, 569–593.
  • Ely, G., A. Malcolm, and O. V. Poliannikov, 2017, Assessing uncertainties in velocity models and images with a fast nonlinear uncertainty quantification method: Geophysics, 83, no. 2, R63–R75, doi: 10.1190/geo2017-0321.1.GPYSA70016-8033
  • Engquist, B., and B. D. Froese, 2014, Application of the Wasserstein metric to seismic signals: Communications in Mathematical Sciences, 12, 979–988, doi: 10.4310/CMS.2014.v12.n5.a7.1539-6746
  • Epanomeritakis, I., V. Akçelik, O. Ghattas, and J. Bielak, 2008, A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion: Inverse Problems, 24, 034015, doi: 10.1088/0266-5611/24/3/034015.INPEEY0266-5611
  • Esser, E., L. Guasch, T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, 2018, Total-variation regularization strategies in full-waveform inversion: SIAM Journal on Imaging Sciences, 11, 376–406, doi: 10.1137/17M111328X.
  • Evensen, G., 2009, Data assimilation: The ensemble Kalman filter: Springer Science and Business Media.
  • Fang, Z., C. Lee, C. Da Silva, F. J. Herrmann, and R. Kuske, 2015, Uncertainty quantification for wavefield reconstruction inversion: 77th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201413198.
  • Fang, Z., C. Y. Lee, C. Da Silva, F. J. Herrmann, and T. Van Leeuwen, 2016, Uncertainty quantification for wavefield reconstruction inversion using a PDE-free semidefinite Hessian and randomize-then-optimize method: 86th Annual International Meeting, SEG, Expanded Abstracts, 1390–1394, doi: 10.1190/segam2016-13879108.1.
  • Fichtner, A., B. L. Kennett, H. Igel, and H.-P. Bunge, 2008, Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain: Geophysical Journal International, 175, 665–685, doi: 10.1111/j.1365-246x.2008.03923.x.GJINEA0956-540X
  • Fichtner, A., and J. Trampert, 2011, Resolution analysis in full waveform inversion: Geophysical Journal International, 187, 1604–1624, doi: 10.1111/j.1365-246x.2011.05218.x.GJINEA0956-540X
  • Fichtner, A., and T. van Leeuwen, 2015, Resolution analysis by random probing: Journal of Geophysical Research: Solid Earth, 120, 5549–5573.
  • Fisher, M., M. Leutbecher, and G. Kelly, 2005, On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation: Quarterly Journal of the Royal Meteorological Society, 131, 3235–3246, doi: 10.1256/qj.04.142.QJRMAM0035-9009
  • Gee, L. S., and T. H. Jordan, 1992, Generalized seismological data functionals: Geophysical Journal International, 111, 363–390, doi: 10.1111/j.1365-246x.1992.tb00584.x.GJINEA0956-540X
  • Golub, G., and V. Pereyra, 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19, R1, doi: 10.1088/0266-5611/19/2/201.INPEEY0266-5611
  • Golub, G. H., and C. F. Van Loan, 2012, Matrix computations: Johns Hopkins University Press.
  • Gouveia, W. P., and J. A. Scales, 1998, Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis: Journal of Geophysical Research: Solid Earth, 103, 2759–2779, doi: 10.1029/97JB02933.
  • Haario, H., M. Laine, A. Mira, and E. Saksman, 2006, Dram: Efficient adaptive MCMC: Statistics and Computing, 16, 339–354, doi: 10.1007/s11222-006-9438-0.STACE30960-3174
  • Haber, E., U. M. Ascher, and D. Oldenburg, 2000, On optimization techniques for solving nonlinear inverse problems: Inverse Problems, 16, 1263–1280, doi: 10.1088/0266-5611/16/5/309.INPEEY0266-5611
  • Hastings, W. K., 1970, Monte Carlo sampling methods using Markov chains and their applications: Biometrika, 57, 97–109, doi: 10.1093/biomet/57.1.97.BIOKAX0006-3444
  • Hinze, M., R. Pinnau, M. Ulbrich, and S. Ulbrich, 2008, Optimization with PDE constraints: Springer Science and Business Media.
  • Huang, G., R. Nammour, and W. Symes, 2017, Full-waveform inversion via source-receiver extension: Geophysics, 82, no. 3, R153–R171, doi: 10.1190/geo2016-0301.1.GPYSA70016-8033
  • Kaipio, J., and E. Somersalo, 2006, Statistical and computational inverse problems: Springer Science and Business Media.
  • Keilis-Borok, V. I., and T. B. Yanovskaja, 1967, Inverse problems of seismology (structural review): Geophysical Journal International of the Royal Astronomical Society, 13, 223–234, doi: 10.1111/j.1365-246X.1967.tb02156.x.GJOUDQ0275-9128
  • Kitanidis, P. K., 1995, Recent advances in geostatistical inference on hydrogeological variables: Reviews of Geophysics, 33, 1103–1109, doi: 10.1029/95RG00183.REGEEP8755-1209
  • Li, X., A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann, 2012, Fast randomized full-waveform inversion with compressive sensing: Geophysics, 77, no. 3, A13–A17, doi: 10.1190/geo2011-0410.1.GPYSA70016-8033
  • Li, Y., B. Biondi, R. Clapp, and D. Nichols, 2014, Wave-equation migration velocity analysis for VTI models: Geophysics, 79, no. 3, WA59–WA68, doi: 10.1190/geo2013-0338.1.GPYSA70016-8033
  • Lieberman, C., K. Willcox, and O. Ghattas, 2010, Parameter and state model reduction for large-scale statistical inverse problems: SIAM Journal on Scientific Computing, 32, 2523–2542, doi: 10.1137/090775622.SJOCE31064-8275
  • Lim, S., 2017, Bayesian inverse problems and seismic inversion: Ph.D. thesis, University of Oxford.
  • Luo, Y., and G. T. Schuster, 1991, Wave-equation traveltime inversion: Geophysics, 56, 645–653, doi: 10.1190/1.1443081.GPYSA70016-8033
  • Martin, J., L. C. Wilcox, C. Burstedde, and O. Ghattas, 2012, A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion: SIAM Journal on Scientific Computing, 34, A1460–A1487, doi: 10.1137/110845598.SJOCE31064-8275
  • Matheron, G., 2012, Estimating and choosing: An essay on probability in practice: Springer Science and Business Media.
  • Métivier, L., R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, 2016, Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion: Geophysical Journal International, 205, 345–377, doi: 10.1093/gji/ggw014.GJINEA0956-540X
  • Métivier, L., R. Brossier, J. Virieux, and S. Operto, 2013, Full waveform inversion and the truncated Newton method: SIAM Journal on Scientific Computing, 35, B401–B437, doi: 10.1137/120877854.SJOCE31064-8275
  • Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953, Equation of state calculations by fast computing machines: The Journal of Chemical Physics, 21, 1087–1092, doi: 10.1063/1.1699114.
  • Mosegaard, K., and A. Tarantola, 1995, Monte Carlo sampling of solutions to inverse problems: Journal of Geophysical Research: Solid Earth, 100, 12431–12447, doi: 10.1029/94JB03097.
  • Nocedal, J., and S. J. Wright, 2006, Numerical optimization: Springer-Verlag.
  • Orieux, F., O. Féron, and J.-F. Giovannelli, 2012, Sampling high-dimensional Gaussian distributions for general linear inverse problems: IEEE Signal Processing Letters, 19, 251–254, doi: 10.1109/LSP.2012.2189104.
  • Osypov, K., Y. Yang, A. Fournier, N. Ivanova, R. Bachrach, C. E. Yarman, Y. You, D. Nichols, and M. Woodward, 2013, Model-uncertainty quantification in seismic tomography: Method and applications: Geophysical Prospecting, 61, 1114–1134, doi: 10.1111/1365-2478.12058.GPPRAR0016-8025
  • Papandreou, G., and A. L. Yuille, 2010, Gaussian sampling by local perturbations: Advances in Neural Information Processing Systems, 1858–1866.1049-5258
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246x.2006.02978.x.GJINEA0956-540X
  • Pratt, G., C. Shin, and G. Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998.00498.x.GJINEA0956-540X
  • Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64, 888–901, doi: 10.1190/1.1444597.GPYSA70016-8033
  • Press, F., 1968, Earth models obtained by Monte Carlo inversion: Journal of Geophysical Research, 73, 5223–5234, doi: 10.1029/JB073i016p05223.JGREA20148-0227
  • Roberts, G. O., and J. S. Rosenthal, 2001, Optimal scaling for various Metropolis-Hastings algorithms: Statistical Science, 16, 351–367, doi: 10.1214/ss/1015346320.STSCEP0883-4237
  • Rue, H., 2001, Fast sampling of Gaussian Markov random fields: Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 325–338, doi: 10.1111/1467-9868.00288.
  • Sava, P., and B. Biondi, 2004, Wave-equation migration velocity analysis. I: Theory: Geophysical Prospecting, 52, 593–606, doi: 10.1111/j.1365-2478.2004.00447.x.GPPRAR0016-8025
  • Sirgue, L., and R. G. Pratt, 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69, 231–248, doi: 10.1190/1.1649391.GPYSA70016-8033
  • Solonen, A., A. Bibov, J. M. Bardsley, and H. Haario, 2014, Optimization-based sampling in ensemble Kalman filtering: International Journal for Uncertainty Quantification, 4, 349–364, doi: 10.1615/Int.J.UncertaintyQuantification.v4.i4.
  • Stuart, G., W. Yang, S. Minkoff, and F. Pereira, 2016, A two-stage Markov chain Monte Carlo method for velocity estimation and uncertainty quantification: 86th Annual International Meeting, SEG, Expanded Abstracts, 3682–3687, doi: 10.1190/segam2016-13865449.1.
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.
  • Tarantola, A., and B. Valette, 1982a, Generalized nonlinear inverse problems solved using the least squares criterion: Reviews of Geophysics, 20, 219–232, doi: 10.1029/RG020i002p00219.REGEEP8755-1209
  • Tarantola, A., and B. Valette, 1982b, Inverse problems = quest for information: Journal of Geophysics, 50, 159–170.JGEOD40340-062X
  • Thurin, J., R. Brossier, and L. Métivier, 2017, An ensemble-transform Kalman filter: Full-waveform inversion scheme for uncertainty estimation: 87th Annual International Meeting, SEG, Expanded Abstracts, 1307–1313, doi: 10.1190/segam2017-17733053.1.
  • van Leeuwen, T., A. Y. Aravkin, and F. J. Herrmann, 2014, Comment on: “Application of the variable projection scheme for frequency-domain full-waveform inversion” (M. Li, J. Rickett, and A. Abubakar, Geophysics, 78, no. 6, R249-R257): Geophysics, 79, no. 3, X11–X17, doi: 10.1190/geo2013-0466.1.GPYSA70016-8033
  • van Leeuwen, T., and F. J. Herrmann, 2013a, Fast waveform inversion without source encoding: Geophysical Prospecting, 61, 10–19, doi: 10.1111/j.1365-2478.2012.01096.x.GPPRAR0016-8025
  • van Leeuwen, T., and F. J. Herrmann, 2013b, Mitigating local minima in full-waveform inversion by expanding the search space: Geophysical Journal International, 195, 661–667, doi: 10.1093/gji/ggt258.GJINEA0956-540X
  • van Leeuwen, T., and F. J. Herrmann, 2015, A penalty method for PDE-constrained optimization in inverse problems: Inverse Problems, 32, 015007, doi: 10.1088/0266-5611/32/1/015007.INPEEY0266-5611
  • van Leeuwen, T., and W. Mulder, 2010, A correlation-based misfit criterion for wave-equation traveltime tomography: Geophysical Journal International, 182, 1383–1394, doi: 10.1111/j.1365-246X.2010.04681.x.GJINEA0956-540X
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033
  • Warner, M., and L. Guasch, 2016, Adaptive waveform inversion: Theory: Geophysics, 81, no. 6, R429–R445, doi: 10.1190/geo2015-0387.1.GPYSA70016-8033
  • Warner, M., T. Nangoo, N. Shah, A. Umpleby, and J. Morgan, 2013, Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting: 83rd Annual International Meeting, SEG, Expanded Abstracts, 903–907, doi: 10.1190/segam2013-1067.1.
  • Yang, Y., B. Engquist, J. Sun, and B. F. Hamfeldt, 2018, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion: Geophysics, 83, no. 1, R43–R62, doi: 10.1190/geo2016-0663.1.GPYSA70016-8033
  • Yuan, S., and S. Wang, 2013, Spectral sparse Bayesian learning reflectivity inversion: Geophysical Prospecting, 61, 735–746, doi: 10.1111/1365-2478.12000.GPPRAR0016-8025
  • Yuan, S., S. Wang, M. Ma, Y. Ji, and L. Deng, 2017, Sparse Bayesian learning-based time-variant deconvolution: IEEE Transactions on Geoscience and Remote Sensing, 55, 6182–6194, doi: 10.1109/TGRS.2017.2722223.IGRSD20196-2892
  • Zhu, H., S. Li, S. Fomel, G. Stadler, and O. Ghattas, 2016, A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration: Geophysics, 81, no. 5, R307–R323, doi: 10.1190/geo2015-0641.1.GPYSA70016-8033