Uncertainty quantification for inverse problems with weak partial-differential-equation constraints
Authors:ABSTRACT
In statistical inverse problems, the objective is a complete statistical description of unknown parameters from noisy observations to quantify uncertainties in unknown parameters. We consider inverse problems with partial-differential-equation (PDE) constraints, which are applicable to many seismic problems. Bayesian inference is one of the most widely used approaches to precisely quantify statistics through a posterior distribution, incorporating uncertainties in observed data, modeling kernel, and prior knowledge of parameters. Typically when formulating the posterior distribution, the PDE constraints are required to be exactly satisfied, resulting in a highly nonlinear forward map and a posterior distribution with many local maxima. These drawbacks make it difficult to find an appropriate approximation for the posterior distribution. Another complicating factor is that traditional Markov chain Monte Carlo (MCMC) methods are known to converge slowly for realistically sized problems. To overcome these drawbacks, we relax the PDE constraints by introducing an auxiliary variable, which allows for Gaussian errors in the PDE and yields a bilinear posterior distribution with weak PDE constraints that is more amenable to uncertainty quantification because of its special structure. We determine that for a particular range of variance choices for the PDE misfit term, the new posterior distribution has fewer modes and can be well-approximated by a Gaussian distribution, which can then be sampled in a straightforward manner. Because it is prohibitively expensive to explicitly construct the dense covariance matrix of the Gaussian approximation for problems with more than unknowns, we have developed a method to implicitly construct it, which enables efficient sampling. We apply this framework to 2D seismic inverse problems with 1800 and 92,455 unknown parameters. The results illustrate that our framework can produce comparable statistical quantities with those produced by conventional MCMC-type methods while requiring far fewer PDE solves, which are the main computational bottlenecks in these problems.
REFERENCES
- 2016, Fast 3D frequency-domain full-waveform inversion with a parallel block low-rank multifrontal direct solver: Application to OBC data from the North Sea: Geophysics, 81, no. 6,
R363–R383 , doi:10.1190/geo2016-0052.1 .GPYSA7 0016-8033 , - 2001, A fully asynchronous multifrontal solver using distributed dynamic scheduling: SIAM Journal on Matrix Analysis and Applications, 23,
15–41 , doi:10.1137/S0895479899358194 .SJMAEL 0895-4798 , - 2006, Hybrid scheduling for the parallel solution of linear systems: Parallel Computing, 32,
136–156 , doi:10.1016/j.parco.2005.07.004 .PACOEJ 0167-8191 , - 2015, Randomize-then-optimize for sampling and uncertainty quantification in electrical impedance tomography: SIAM/ASA Journal on Uncertainty Quantification, 3,
1136–1158 , doi:10.1137/140978272 . , - 2014, Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems: SIAM Journal on Scientific Computing, 36,
A1895–A1910 , doi:10.1137/140964023 .SJOCE3 1064-8275 , - 1763, An essay towards solving a problem in the doctrine of chances: Philosophical Transactions, 53,
370–418 , doi:10.1098/rstl.1763.0053 . , - 2012, Large-scale optimization with applications. Part I: Optimization in inverse problems and design: Springer Science and Business Media. ,
- 2013, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion: SIAM Journal on Scientific Computing, 35,
A2494–A2523 , doi:10.1137/12089586X .SJOCE3 1064-8275 , - 1995, Multiscale seismic waveform inversion: Geophysics, 60,
1457–1473 , doi:10.1190/1.1443880 .GPYSA7 0016-8033 , - 2012, Ensemble randomized maximum likelihood method as an iterative ensemble smoother: Mathematical Geosciences, 44,
1–26 , doi:10.1007/s11004-011-9376-z . , - 2013, An optimal 9-point finite difference scheme for the Helmholtz equation with PML: International Journal of Numerical Analysis and Modeling, 10,
389–410 . , - 2004, Abstract algebra: Wiley Hoboken. ,
- 1981, Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods: Biometrika, 68,
589–599 , doi:10.1093/biomet/68.3.589 .BIOKAX 0006-3444 , - 1992,
Bootstrap methods: Another look at the jackknife , in S. KotzN. L. Johnson, eds., Breakthroughs in statistics: Springer,569–593 . , - 2017, Assessing uncertainties in velocity models and images with a fast nonlinear uncertainty quantification method: Geophysics, 83, no. 2,
R63–R75 , doi:10.1190/geo2017-0321.1 .GPYSA7 0016-8033 , - 2014, Application of the Wasserstein metric to seismic signals: Communications in Mathematical Sciences, 12,
979–988 , doi:10.4310/CMS.2014.v12.n5.a7 .1539-6746 , - 2008, A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion: Inverse Problems, 24,
034015 , doi:10.1088/0266-5611/24/3/034015 .INPEEY 0266-5611 , - 2018, Total-variation regularization strategies in full-waveform inversion: SIAM Journal on Imaging Sciences, 11,
376–406 , doi:10.1137/17M111328X . , - 2009, Data assimilation: The ensemble Kalman filter: Springer Science and Business Media. ,
- 2015, Uncertainty quantification for wavefield reconstruction inversion:
77th Annual International Conference and Exhibition, EAGE , Extended Abstracts, doi:10.3997/2214-4609.201413198 . , - 2016, Uncertainty quantification for wavefield reconstruction inversion using a PDE-free semidefinite Hessian and randomize-then-optimize method:
86th Annual International Meeting, SEG , Expanded Abstracts,1390–1394 , doi:10.1190/segam2016-13879108.1 . , - 2008, Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain: Geophysical Journal International, 175,
665–685 , doi:10.1111/j.1365-246x.2008.03923.x .GJINEA 0956-540X , - 2011, Resolution analysis in full waveform inversion: Geophysical Journal International, 187,
1604–1624 , doi:10.1111/j.1365-246x.2011.05218.x .GJINEA 0956-540X , - 2015, Resolution analysis by random probing: Journal of Geophysical Research: Solid Earth, 120,
5549–5573 . , - 2005, On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation: Quarterly Journal of the Royal Meteorological Society, 131,
3235–3246 , doi:10.1256/qj.04.142 .QJRMAM 0035-9009 , - 1992, Generalized seismological data functionals: Geophysical Journal International, 111,
363–390 , doi:10.1111/j.1365-246x.1992.tb00584.x .GJINEA 0956-540X , - 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19,
R1 , doi:10.1088/0266-5611/19/2/201 .INPEEY 0266-5611 , - 2012, Matrix computations: Johns Hopkins University Press. ,
- 1998, Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis: Journal of Geophysical Research: Solid Earth, 103,
2759–2779 , doi:10.1029/97JB02933 . , - 2006, Dram: Efficient adaptive MCMC: Statistics and Computing, 16,
339–354 , doi:10.1007/s11222-006-9438-0 .STACE3 0960-3174 , - 2000, On optimization techniques for solving nonlinear inverse problems: Inverse Problems, 16,
1263–1280 , doi:10.1088/0266-5611/16/5/309 .INPEEY 0266-5611 , - 1970, Monte Carlo sampling methods using Markov chains and their applications: Biometrika, 57,
97–109 , doi:10.1093/biomet/57.1.97 .BIOKAX 0006-3444 , - 2008, Optimization with PDE constraints: Springer Science and Business Media. ,
- 2017, Full-waveform inversion via source-receiver extension: Geophysics, 82, no. 3,
R153–R171 , doi:10.1190/geo2016-0301.1 .GPYSA7 0016-8033 , - 2006, Statistical and computational inverse problems: Springer Science and Business Media. ,
- 1967, Inverse problems of seismology (structural review): Geophysical Journal International of the Royal Astronomical Society, 13,
223–234 , doi:10.1111/j.1365-246X.1967.tb02156.x .GJOUDQ 0275-9128 , - 1995, Recent advances in geostatistical inference on hydrogeological variables: Reviews of Geophysics, 33,
1103–1109 , doi:10.1029/95RG00183 .REGEEP 8755-1209 , - 2012, Fast randomized full-waveform inversion with compressive sensing: Geophysics, 77, no. 3,
A13–A17 , doi:10.1190/geo2011-0410.1 .GPYSA7 0016-8033 , - 2014, Wave-equation migration velocity analysis for VTI models: Geophysics, 79, no. 3,
WA59–WA68 , doi:10.1190/geo2013-0338.1 .GPYSA7 0016-8033 , - 2010, Parameter and state model reduction for large-scale statistical inverse problems: SIAM Journal on Scientific Computing, 32,
2523–2542 , doi:10.1137/090775622 .SJOCE3 1064-8275 , - 2017, Bayesian inverse problems and seismic inversion: Ph.D. thesis, University of Oxford. ,
- 1991, Wave-equation traveltime inversion: Geophysics, 56,
645–653 , doi:10.1190/1.1443081 .GPYSA7 0016-8033 , - 2012, A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion: SIAM Journal on Scientific Computing, 34,
A1460–A1487 , doi:10.1137/110845598 .SJOCE3 1064-8275 , - 2012, Estimating and choosing: An essay on probability in practice: Springer Science and Business Media. ,
- 2016, Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion: Geophysical Journal International, 205,
345–377 , doi:10.1093/gji/ggw014 .GJINEA 0956-540X , - 2013, Full waveform inversion and the truncated Newton method: SIAM Journal on Scientific Computing, 35,
B401–B437 , doi:10.1137/120877854 .SJOCE3 1064-8275 , - 1953, Equation of state calculations by fast computing machines: The Journal of Chemical Physics, 21,
1087–1092 , doi:10.1063/1.1699114 . , - 1995, Monte Carlo sampling of solutions to inverse problems: Journal of Geophysical Research: Solid Earth, 100,
12431–12447 , doi:10.1029/94JB03097 . , - 2006, Numerical optimization: Springer-Verlag. ,
- 2012, Sampling high-dimensional Gaussian distributions for general linear inverse problems: IEEE Signal Processing Letters, 19,
251–254 , doi:10.1109/LSP.2012.2189104 . , - 2013, Model-uncertainty quantification in seismic tomography: Method and applications: Geophysical Prospecting, 61,
1114–1134 , doi:10.1111/1365-2478.12058 .GPPRAR 0016-8025 , - 2010, Gaussian sampling by local perturbations: Advances in Neural Information Processing Systems,
1858–1866 .1049-5258 , - 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167,
495–503 , doi:10.1111/j.1365-246x.2006.02978.x .GJINEA 0956-540X , - 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133,
341–362 , doi:10.1046/j.1365-246X.1998.00498.x .GJINEA 0956-540X , - 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64,
888–901 , doi:10.1190/1.1444597 .GPYSA7 0016-8033 , - 1968, Earth models obtained by Monte Carlo inversion: Journal of Geophysical Research, 73,
5223–5234 , doi:10.1029/JB073i016p05223 .JGREA2 0148-0227 , - 2001, Optimal scaling for various Metropolis-Hastings algorithms: Statistical Science, 16,
351–367 , doi:10.1214/ss/1015346320 .STSCEP 0883-4237 , - 2001, Fast sampling of Gaussian Markov random fields: Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63,
325–338 , doi:10.1111/1467-9868.00288 . , - 2004, Wave-equation migration velocity analysis. I: Theory: Geophysical Prospecting, 52,
593–606 , doi:10.1111/j.1365-2478.2004.00447.x .GPPRAR 0016-8025 , - 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69,
231–248 , doi:10.1190/1.1649391 .GPYSA7 0016-8033 , - 2014, Optimization-based sampling in ensemble Kalman filtering: International Journal for Uncertainty Quantification, 4,
349–364 , doi:10.1615/Int.J.UncertaintyQuantification.v4.i4 . , - 2016, A two-stage Markov chain Monte Carlo method for velocity estimation and uncertainty quantification:
86th Annual International Meeting, SEG , Expanded Abstracts,3682–3687 , doi:10.1190/segam2016-13865449.1 . , - 2005, Inverse problem theory and methods for model parameter estimation: SIAM. ,
- 1982a, Generalized nonlinear inverse problems solved using the least squares criterion: Reviews of Geophysics, 20,
219–232 , doi:10.1029/RG020i002p00219 .REGEEP 8755-1209 , - 1982b, Inverse problems = quest for information: Journal of Geophysics, 50,
159–170 .JGEOD4 0340-062X , - 2017, An ensemble-transform Kalman filter: Full-waveform inversion scheme for uncertainty estimation:
87th Annual International Meeting, SEG , Expanded Abstracts,1307–1313 , doi:10.1190/segam2017-17733053.1 . , - 2014, Comment on: “Application of the variable projection scheme for frequency-domain full-waveform inversion” (M. Li, J. Rickett, and A. Abubakar, Geophysics, 78, no. 6, R249-R257): Geophysics, 79, no. 3,
X11–X17 , doi:10.1190/geo2013-0466.1 .GPYSA7 0016-8033 , - 2013a, Fast waveform inversion without source encoding: Geophysical Prospecting, 61,
10–19 , doi:10.1111/j.1365-2478.2012.01096.x .GPPRAR 0016-8025 , - 2013b, Mitigating local minima in full-waveform inversion by expanding the search space: Geophysical Journal International, 195,
661–667 , doi:10.1093/gji/ggt258 .GJINEA 0956-540X , - 2015, A penalty method for PDE-constrained optimization in inverse problems: Inverse Problems, 32,
015007 , doi:10.1088/0266-5611/32/1/015007 .INPEEY 0266-5611 , - 2010, A correlation-based misfit criterion for wave-equation traveltime tomography: Geophysical Journal International, 182,
1383–1394 , doi:10.1111/j.1365-246X.2010.04681.x .GJINEA 0956-540X , - 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6,
WCC1–WCC26 , doi:10.1190/1.3238367 .GPYSA7 0016-8033 , - 2016, Adaptive waveform inversion: Theory: Geophysics, 81, no. 6,
R429–R445 , doi:10.1190/geo2015-0387.1 .GPYSA7 0016-8033 , - 2013, Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting:
83rd Annual International Meeting, SEG , Expanded Abstracts,903–907 , doi:10.1190/segam2013-1067.1 . , - 2018, Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion: Geophysics, 83, no. 1,
R43–R62 , doi:10.1190/geo2016-0663.1 .GPYSA7 0016-8033 , - 2013, Spectral sparse Bayesian learning reflectivity inversion: Geophysical Prospecting, 61,
735–746 , doi:10.1111/1365-2478.12000 .GPPRAR 0016-8025 , - 2017, Sparse Bayesian learning-based time-variant deconvolution: IEEE Transactions on Geoscience and Remote Sensing, 55,
6182–6194 , doi:10.1109/TGRS.2017.2722223 .IGRSD2 0196-2892 , - 2016, A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration: Geophysics, 81, no. 5,
R307–R323 , doi:10.1190/geo2015-0641.1 .GPYSA7 0016-8033 ,