This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

The transition from recoverable elastic to permanent inelastic deformation is marked by the onset of fracturing in the brittle field. Detection of this transition in materials is crucial to predict imminent failure/fracturing. We have used an ultrasonic pulse transmission method to record the change in waveform across this transition during fracturing experiments. The transition from elastic to inelastic deformation coincides with a minimum in ultrasonic attenuation (i.e., maximum wave amplitude). Prior to this attenuation minimum, the existing microfractures close. After this minimum, new microfractures form and attenuation increases until peak stress conditions, at which point, larger fractures form leading to complete sample failure. In our experiments, velocity changes are not sensitive enough to be indicative for the transition from elastic to inelastic deformation. Analysis of attenuation, not velocity, may thus detect imminent failure in materials. Our results may help detect fracturing in borehole casings or the near-wellbore area, or they may help predict imminent release of energy by seismic rupture.

REFERENCES

  • Alassi, H., R. Holt, and M. Landrø, 2010, Relating 4D seismics to reservoir geomechanical changes using a discrete element approach: Geophysical Prospecting, 58, 657–668, doi: 10.1111/j.1365-2478.2009.00859.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Ayling, M. R., P. G. Meredith, and S. A. Murrell, 1995, Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties. I: Elastic-wave propagation measurements on dry rocks: Tectonophysics, 245, 205–221, doi: 10.1016/0040-1951(94)00235-2.TCTOAM0040-1951CrossrefWeb of ScienceGoogle Scholar
  • Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal layering: Journal of Geophysical Research, 67, 4427–4440, doi: 10.1029/JZ067i011p04427.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Barnhoorn, A., S. F. Cox, D. J. Robinson, and T. Senden, 2010, Stress- and fluid-driven failure during fracture array growth: Implications for coupled deformation and fluid flow in the crust: Geology, 38, 779–782, doi: 10.1130/G31010.1.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Bonnelye, A., A. Schubnel, C. David, P. Henry, Y. Guglielmi, C. Gout, A.-L. Fauchille, and P. Dick, 2017, Elastic wave velocity evolution of shales deformed under uppermost crustal conditions: Journal of Geophysical Research, 122, 130–141, doi: 10.1002/2016JB013540.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Charléty, J., N. Cuenot, C. Dorbath, and L. Dorbath, 2006, Tomographic study of the seismic velocity at the Soultz-sous-Forêts EGS/HDR site: Geothermics, 35, 532–543, doi: 10.1016/j.geothermics.2006.10.002.GTMCAT0375-6505CrossrefWeb of ScienceGoogle Scholar
  • Couvreur, J. F., A. Vervoort, M. S. King, E. Lousberg, and J. F. Thimus, 2001, Successive cracking steps of a limestone highlighted by ultrasonic wave: Propagation Geophysical Prospecting, 49, 71–78, doi: 10.1046/j.1365-2478.2001.00242.x.CrossrefWeb of ScienceGoogle Scholar
  • Cramer, D. D., 2008, Stimulating unconventional reservoirs: Lessons learned, successful practices, areas for improvement: Unconventional Reservoirs Conference, SPE, doi: 10.2118/114172-MS.CrossrefGoogle Scholar
  • Curtis, J. B., 2002, Fractured shale-gas systems: AAPG Bulletin, 86, 1921–1938.AABUD20149-1423Web of ScienceGoogle Scholar
  • Douma, L. A. N. R., M. I. W. Primarini, M. E. Houben, and A. Barnhoorn, 2017, The validity of generic trends on multiple scales in rock-physical and rock-mechanical properties of the Whitby Mudstone, United Kingdom: Marine and Petroleum Geology, 84, 135–147, doi: 10.1016/j.marpetgeo.2017.03.028.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Eslami, J., D. Grgic, and D. Hoxha, 2010, Estimation of the damage of a porous limestone from continuous (P- and S-) wave velocity measurements under uniaxial loading and different hydrous conditions: Geophysical Journal International, 183, 1362–1375, doi: 10.1111/j.1365-246X.2010.04801.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Fortin, J., Y. Guéguen, and A. Schubnel, 2007, Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs: Journal of Geophysical Research, 112, B08207, doi: 10.1029/2005JB004005.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Fortin, J., S. Stanchits, G. Dresen, and Y. Guéguen, 2006, Acoustic emission and velocities associated with the formation of compaction bands in sandstone: Journal of Geophysical Research, 111, B10203, doi: 10.1029/2005JB003854.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Frehner, M., 2014, Krauklis wave initiation in fluid-filled fractures by seismic body waves: Geophysics, 79, no. 1, T27–T35, doi: 10.1190/geo2013-0093.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Frehner, M., and S. M. Schmalholz, 2010, Finite-element simulations of Stoneley guided-wave reflection and scattering at the tips of fluid-filled fractures: Geophysics, 75, no. 2, T23–T36, doi: 10.1190/1.3340361.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ghadeer, S. G., and J. H. S. Macquaker, 2012, The role of event beds in the preservation of organic carbon in fine-grained sediments: Analyses of the sedimentological processes operating during deposition of the Whitby Mudstone formation (Toarcian, Lower Jurassic) preserved in northeast England: Marine and Petroleum Geology, 35, 309–320, doi: 10.1016/j.marpetgeo.2012.01.001.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Goodfellow, S. D., N. Tisato, M. Ghofranitabari, M. H. B. Nasseri, and R. P. Young, 2015, Attenuation properties of Fontainebleau sandstone during true-triaxial deformation using active and passive ultrasonics: Rock Mechanics and Rock Engineering, 48, 2551–2566, doi: 10.1007/s00603-015-0833-8.RMREDX1434-453XCrossrefWeb of ScienceGoogle Scholar
  • Granryd, L., I. C. Getting, and H. Spetzler, 1983, Path dependence of acoustic velocity and attenuation in experimentally deformed westerly granite: Geophysical Research Letters, 10, 71–74, doi: 10.1029/GL010i001p00071.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Groenenboom, J., and J. Falk, 2000, Scattering by hydraulic fractures: Finite-difference modeling and laboratory data: Geophysics, 65, 612–622, doi: 10.1190/1.1444757.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Guo, M.-Q., L.-Y. Fu, and J. Ba, 2009, Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements: Geophysical Journal International, 178, 447–456, doi: 10.1111/j.1365-246X.2009.04159.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Hadley, K., 1976, Comparison of calculated and observed crack densities and seismic velocities in westerly granite: Journal of Geophysical Research, 81, 3484–3494, doi: 10.1029/JB081i020p03484.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Haering, M. O., U. Schanz, F. Ladner, and B. C. Dyer, 2008, Characterization of the Basel 1 enhanced geothermal system: Geothermics, 37, 469–495, doi: 10.1016/j.geothermics.2008.06.002.GTMCAT0375-6505CrossrefWeb of ScienceGoogle Scholar
  • Hart, D. J., and H. F. Wang, 1995, Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone: Journal of Geophysical Research, 100, 17741–17751, doi: 10.1029/95JB01242.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Heap, M. J., D. R. Faulkner, P. G. Meredith, and S. Vinciguerra, 2010, Elastic moduli evolution and accompanying stress changes with increasing crack damage: Implications for stress changes around fault zones and volcanoes during deformation: Geophysical Journal International, 183, 225–236, doi: 10.1111/j.1365-246X.2010.04726.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Herriaz, M., and A. F. Espinosa, 1987, Coda waves: A review: Pure and Applied Geophysics, 125, 499–577, doi: 10.1007/BF00879572.PAGYAV0033-4553CrossrefWeb of ScienceGoogle Scholar
  • Houben, M. E., A. Barnhoorn, J. Lie-A-Fat, T. Ravestein, C. J. Peach, and M. R. Drury, 2016, Microstructural characteristics of the Whitby Mudstone Formation (UK): Marine and Petroleum Geology, 70, 185–200, doi: 10.1016/j.marpetgeo.2015.11.011.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Houben, M. E., N. J. Hardebol, A. Barnhoorn, Q. D. Boersma, A. Carone, Y. Liu, D. A. M. de Winter, C. J. Peach, and M. R. Drury, 2017, Fluid flow from matrix to fractures in Early Jurassic shales: International Journal of Coal Geology, 175, 26–39, doi: 10.1016/j.coal.2017.03.012.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Ionov, A. M., 2007, Stoneley wave generation by an incident P-wave propagating in the surrounding formation across a horizontal fluid-filled fracture: Geophysical Prospecting, 55, 71–82, doi: 10.1111/j.1365-2478.2006.00577.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Jones, T. D., 1986, Pore fluids and frequency-dependent wave propagation in rocks: Geophysics, 51, 1939–1953, doi: 10.1190/1.1442050.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kranz, R. L., 1983, Microcracks in rock: A review: Tectonophysics, 100, 449–480, doi: 10.1016/0040-1951(83)90198-1.TCTOAM0040-1951CrossrefWeb of ScienceGoogle Scholar
  • Littke, R., D. Leythaeuser, J. Rullkötter, and D. R. Baker, 1991, Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany, in R. V. TysonT. H. Pearson, eds., Modern and ancient continental shelf anoxia: Geological Society of London, Special Publication 58, 311–333.CrossrefGoogle Scholar
  • Lockner, D. A., J. B. Walsh, and J. D. Byerlee, 1977, Changes in seismic velocity and attenuation during deformation of granite: Journal of Geophysical Research, 82, 5374–5378, doi: 10.1029/JB082i033p05374.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Main, I. G., S. Peacock, and P. G. Meredith, 1990, Scattering attenuation and the fractal geometry of fracture systems: Pure and Applied Geophysics, 133, 283–304, doi: 10.1007/BF00877164.PAGYAV0033-4553CrossrefWeb of ScienceGoogle Scholar
  • Maksimov, G. A., A. V. Derov, B. M. Kashtan, and M. Y. Lazarkov, 2011, Estimation of hydro-fracture parameters by analysis of tube waves at vertical seismic profiling: Acoustical Physics, 57, 529–541, doi: 10.1134/S1063771011040166.AOUSEK1063-7710CrossrefWeb of ScienceGoogle Scholar
  • Maultzsch, S., M. Chapman, E. R. Liu, and X. Y. Li, 2003, Modeling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: Implication of fracture size estimation from anisotropic measurements: Geophysical Prospecting, 51, 381–392, doi: 10.1046/j.1365-2478.2003.00386.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Mavko, G. M., 1979, Frictional attenuation: An inherent amplitude dependence: Journal of Geophysical Research, 84, 4769–4775, doi: 10.1029/JB084iB09p04769.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Mavko, G., T. Mukerji, and N. Godfrey, 1995, Predicting stress-induced velocity anisotropy in rocks: Geophysics, 60, 1081–1087, doi: 10.1190/1.1443836.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nicolas, A., J. Fortin, J. B. Regnet, A. Dimanov, and Y. Guéguen, 2016, Brittle and semi-brittle behaviors of a carbonate rock: Influence of water and temperature: Geophysical Journal International, 206, 438–456, doi: 10.1093/gji/ggw154.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Nicolas, A., J. Fortin, J. B. Regnet, B. A. Verberne, O. Plümper, A. Dimanov, C. J. Spiers, and Y. Guéguen, 2017, Brittle and semibrittle creep of Tavel limestone deformed at room temperature: Journal of Geophysical Research, 122, 4436–4459, doi: 10.1002/2016JB013557.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Paterson, M. S., and T. F Wong, 2005, Experimental rock deformation — The brittle field: Springer.Google Scholar
  • Peacock, S., C. McCann, J. Sothcott, and T. R. Astin, 1994, Experimental measurements of seismic attenuation in microfractured sedimentary rock: Geophysics, 59, 1342–1351, doi: 10.1190/1.1443693.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Peksa, A. E., K.-H. A. A. Wolf, and P. L. J. Zitha, 2015, Bentheimer sandstone revisited for experimental purposes: Marine and Petroleum Geology, 67, 701–719, doi: 10.1016/j.marpetgeo.2015.06.001.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Peng, Z., and Y. Ben-Zion, 2006, Temporal changes of shallow seismic velocity around the Karadere-Düzce Branch of the North Anatolian Fault and strong ground motion: Pure and Applied Geophysics, 163, 567–600, doi: 10.1007/s00024-005-0034-6.PAGYAV0033-4553CrossrefWeb of ScienceGoogle Scholar
  • Powell, J. H., 2010, Jurassic sedimentation in the Cleveland Basin: A review: Proceedings of the Yorkshire Geological Society, 58, 21–72, doi: 10.1144/pygs.58.1.278.PYGSABCrossrefWeb of ScienceGoogle Scholar
  • Quintal, B., R. Jänicke, J. G. Rubino, H. Steeb, and K. Holliger, 2014, Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks: Geophysics, 79, no. 5, WB15–WB24, doi: 10.1190/geo2013-0409.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Rubino, J. G., L. Guarracino, T. M. Müller, and K. Holliger, 2013, Do seismic waves sense fracture connectivity?: Geophysical Research Letters, 40, 692–696, doi: 10.1002/grl.50127.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Rubino, J. G., B. Quintal, T. M. Müller, L. Guarracino, R. Jänicke, H. Steeb, and K. Holliger, 2015, Energy dissipation of P- and S-waves in fluid-saturated rocks: An overview focusing on hydraulically connected fractures: Journal of Earth Sciences, 26, 785–790, doi: 10.1007/s12583-015-0613-0. JESCBMCrossrefWeb of ScienceGoogle Scholar
  • Saenger, E. H., and S. A. Shapiro, 2002, Effective velocities in fractured media: a numerical study using the rotated staggered finite-difference grid: Geophysical Prospecting, 50, 183–194, doi: 10.1046/j.1365-2478.2002.00309.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sarout, J., and Y. Guéguen, 2007, Anisotropy of elastic wave velocities in deformed shales: Part 1 — Experimental results: Geophysics, 73, no. 5, D75–D89, doi: 10.1190/1.2952744. GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sarout, J., E. Cazes, C. Delle Piane, A. Arena, and L. Esteban, 2017, Stress-dependent permeability and wave dispersion in tight cracked rocks: Experimental validation of simple effective medium models: Journal of Geophysical Research Solid Earth, 122, 6180–6201, doi: 10.1002/2017JB014147.JGEREE0148-0227CrossrefWeb of ScienceGoogle Scholar
  • Sayers, C. M., 2002a, Fluid-dependent shear-wave splitting in fractured media: Geophysical Prospecting, 50, 393–401, doi: 10.1046/j.1365-2478.2002.00324.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sayers, C. M., 2002b, Stress-dependent elastic anisotropy of sandstones: Geophysical Prospecting, 50, 85–95, doi: 10.1046/j.1365-2478.2002.00289.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sayers, C. M., and M. Kachanov, 1995, Microcrack-induced elastic wave anisotropy of brittle rocks: Journal of Geophysical Research, 100, 4149–4156, doi: 10.1029/94JB03134.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Schubnel, A., and Y. Guéguen, 2003, Dispersion and anisotropy of elastic waves in cracked rocks: Journal of Geophysical Research, 108, 2101, doi: 10.1029/2002JB001824.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Schueller, S., F. Gueydan, and P. Davy, 2010, Mechanics of the transition from localized to distributed fracturing in layered brittle-ductile systems: Tectonophysics, 484, 48–59, doi: 10.1016/j.tecto.2009.09.008.TCTOAM0040-1951CrossrefWeb of ScienceGoogle Scholar
  • Shih, P.-J. R., and M. Frehner, 2016, Laboratory evidence for Krauklis-wave resonance in fractures and implications for seismic coda wave analysis: Geophysics, 81, no. 6, T285–T293, doi: 10.1190/geo2016-0067.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Snieder, R., A. Gret, H. Douma, and J. Scales, 2002, Coda wave interferometry for estimating nonlinear behavior in seismic velocity: Science, 295, 2253–2255, doi: 10.1126/science.1070015.SCIEAS0036-8075CrossrefWeb of ScienceGoogle Scholar
  • Stanchits, S., S. Vinciguerra, and G. Dresen, 2006, Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite: Pure and Applied Geophysics, 163, 975–994, doi: 10.1007/s00024-006-0059-5.PAGYAV0033-4553CrossrefWeb of ScienceGoogle Scholar
  • Toksoz, M., D. Johnston, and A. Timur, 1979, Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements: Geophysics, 44, 681–690, doi: 10.1190/1.1440969.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Walsh, J. B., 1965, The effect of crack on the compressibility of rock: Journal of Geophysical Research, 70, 381–389, doi: 10.1029/JZ070i002p00381.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Wei, W., and L.-Y. Fu, 2014, Monte Carlo simulation of stress-associated scattering attenuation from laboratory ultrasonic measurements: Bulletin of the Seismological Society of America, 104, 931–943, doi: 10.1785/0120130082.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Winkler, K., and A. Nur, 1979, Pore fluids and seismic attenuation in rocks: Geophysical Research Letters, 6, 1–4, doi: 10.1029/GL006i001p00001.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Yukutake, H., 1989, Fracture process of granite inferred from measurements of spatial and temporal variations in velocity during triaxial deformations: Journal of Geophysical Research, 94, 15639–15651, doi: 10.1029/JB094iB11p15639.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Zemanek, J., and I. Rudnick, 1961, Attenuation and dispersion of elastic waves in a cylindrical bar: Journal of the Acoustical Society of America, 33, 1283–1288, doi: 10.1121/1.1908417.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • Zhong, X., M. Frehner, K. Kunze, and A. Zappone, 2014, A novel EBSD-based finite-element wave propagation model for investigating seismic anisotropy: Application to Finero Peridotite, Ivrea-Verbano Zone, Northern Italy: Geophysical Research Letters, 41, 7105–7114, doi: 10.1002/2014GL060490.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Zhubayev, A., M. Houben, D. Smeulders, and A. Barnhoorn, 2016, Ultrasonic velocity and attenuation anisotropy of shales (Whitby, UK): Geophysics, 81, no. 1, D45–D56, doi: 10.1190/geo2015-0211.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar