This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


Extracting low signal-to-noise ratio events with the Hough transform from sparse array data


Low-frequency acoustic, i.e., infrasound, waves are measured by sparse arrays of microbarometers. Recorded data are processed by automatic detection algorithms based on array-processing techniques such as time-domain beam forming and f-k analysis. These algorithms use a signal-to-noise ratio (S/N) value as a detection criterion. In the case of high background noise or in the presence of multiple coinciding signals, the event’s S/N decreases and can be missed by automatic processing. In seismology, detecting low-S/N events with geophone arrays is a well-known problem. Whether it is in global earthquake monitoring or reservoir microseismic activity characterization, detecting low-S/N events is needed to better understand the sources or the medium of propagation. We use an image-processing technique as a postprocessing step in the automatic detection of low S/N events. In particular, we consider the use of the Hough transform (HT) technique to detect straight lines in beam-forming results, i.e., a back azimuth (BA) time series. The presence of such lines, due to similar BA values, can be indicative of a low-S/N event. A statistical framework is developed for the HT parameterization, which includes defining a threshold value for detection as well as evaluating the false alarm rate. The method is tested on synthetic data and five years of recorded infrasound from glaciers. It is shown that the automatic detection capability is increased by detecting low-S/N events while keeping a low false-alarm rate.


  • Arrowsmith, S. J., R. Whitaker, S. R. Taylor, R. Burlacu, B. Stump, M. Hedlin, G. Randall, C. Hayward, and D. ReVelle, 2008, Regional monitoring of infrasound events using multiple arrays: Application to Utah and Washington State: Geophysical Journal International, 175, 291–300, doi: 10.1111/j.1365-246X.2008.03912.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Assink, J. D., R. Waxler, W. G. Frazier, and J. Lonzaga, 2013, The estimation of upper atmospheric wind model updates from infrasound data: Journal of Geophysical Research Atmospheres, 118, 707–710.CrossrefWeb of ScienceGoogle Scholar
  • Boué, P., P. Roux, M. Campillo, and B. de Cacqueray, 2013, Double beamforming processing in a seismic prospecting context: Geophysics, 78, no. 3, V101–V108, doi: 10.1190/geo2012-0364.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Brown, D. J., R. Whitaker, B. L. N. Kennett, and C. Tarlowski, 2008, Automatic infrasonic signal detection using the Hough transform: Journal of Geophysical Research, 113, D17.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Carlson, B. D., E. D. Evans, S. L. Wilson, and M. I. T. Lincoln, 1994, Search radar detection and track with the Hough transform. Part III: Detection performance with binary integration: IEEE Transactions on Aerospace and Electronic Systems, 30, 116–125, doi: 10.1109/7.250412.IEARAX0018-9251CrossrefWeb of ScienceGoogle Scholar
  • Chambers, K., J. Kendall, S. Brandsberg-Dahl, and J. Rueda, 2010, Testing the ability of surface arrays to monitor microseismic activity: Geophysical Prospecting, 58, 821–830, doi: 10.1111/j.1365-2478.2010.00893.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Draganov, D., X. Campman, J. Thorbecke, A. Verdel, and K. Wapenaar, 2013, Seismic exploration-scale velocities and structure from ambient seismic noise (>1  Hz): Journal of Geophysical Research: Solid Earth, 118, 4345–4360.CrossrefWeb of ScienceGoogle Scholar
  • Drob, D. P., J. M. Picone, and M. Garcés, 2003, Global morphology of infrasound propagation: Journal of Geophysical Research: Atmospheres, 108, doi: 10.1029/2002JD003307.CrossrefWeb of ScienceGoogle Scholar
  • Duda, R. O., and P. E. Hart, 1972, Use of the Hough transformation to detect lines and curves in pictures: Communications of the ACM, 15, 11–15, doi: 10.1145/361237.361242.CACMA20001-0782CrossrefWeb of ScienceGoogle Scholar
  • Elazar, M., 1995, Search radar track-before-detect using the Hough transform: Ph.D. thesis, Calhoun.Google Scholar
  • Evers, L. G., 2008, The inaudible symphony: On the detection and source identification of atmospheric infrasound: Ph.D. thesis, TU Delft, Delft University of Technology.Google Scholar
  • Evers, L. G., L. Ceranna, H. W. Haak, A. Le Pichon, and R. W. Whitaker, 2007, A seismoacoustic analysis of the gas-pipeline explosion near Ghislenghien in Belgium: Bulletin of the Seismological Society of America, 97, 417–425, doi: 10.1785/0120060061.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Evers, L. G., and H. W. Haak, 2005, The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna: Journal of Atmospheric and Solar-Terrestrial Physics, 67, 259–268, doi: 10.1016/j.jastp.2004.09.002.JASPF31364-6826CrossrefWeb of ScienceGoogle Scholar
  • Forghani, F., and R. Snieder, 2010, Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry: The Leading Edge, 29, 790–794, doi: 10.1190/1.3462779.AbstractGoogle Scholar
  • Furmanski, C. S., and S. A. Engel, 2000, An oblique effect in human primary visual cortex: Nature Neuroscience, 3, 535–536, doi: 10.1038/75702.NANEFN1097-6256CrossrefWeb of ScienceGoogle Scholar
  • Ge, M., 2005, Efficient mine microseismic monitoring: International Journal of Coal Geology, 64, 44–56, doi: 10.1016/j.coal.2005.03.004.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Gibbons, S. J., and F. Ringdal, 2006, The detection of low magnitude seismic events using array-based waveform correlation: Geophysical Journal International, 165, 149–166, doi: 10.1111/j.1365-246X.2006.02865.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Gibbons, S. J., and F. Ringdal, 2012, Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector: IEEE Transactions on Geoscience and Remote Sensing, 50, 1897–1909, doi: 10.1109/TGRS.2011.2170429.IGRSD20196-2892CrossrefWeb of ScienceGoogle Scholar
  • Hall, P., N. Tajvidi, and P. E. Malin, 2006, Locating lines among scattered points: Bernoulli, 12, 821–839.CrossrefWeb of ScienceGoogle Scholar
  • Harmon, N., P. Gerstoft, C. A. Rychert, G. A. Abers, M. S. de la Cruz, and K. M. Fischer, 2008, Phase velocities from seismic noise using beamforming and cross correlation in Costa Rica and Nicaragua: Geophysical Research Letters, 35, 1–6, doi: 10.1029/2008GL035387.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Le Pichon, A., E. Blanc, and A. Hauchecorne, 2010, Infrasound monitoring for atmospheric studies: Springer Science & Business Media.Google Scholar
  • Le Pichon, A., J. Vergoz, E. Blanc, J. Guilbert, L. Ceranna, L. Evers, and N. Brachet, 2009, Assessing the performance of the international monitoring system’s infrasound network: Geographical coverage and temporal variabilities: Journal of Geophysical Research: Atmospheres, 114, D8.CrossrefWeb of ScienceGoogle Scholar
  • Lezama, J., J.-M. Morel, G. Randall, and R. G. von Gioi, 2015, A contrario 2D point alignment detection: IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 499–512, doi: 10.1109/TPAMI.2014.2345389.ITPIDJ0162-8828CrossrefWeb of ScienceGoogle Scholar
  • Maxwell, S. C., J. Rutledge, R. Jones, and M. Fehler, 2010, Petroleum reservoir characterization using downhole microseismic monitoring: Geophysics, 75, no. 5, 75A129–75A137, doi: 10.1190/1.3477966.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Melton, B. S., and L. F. Bailey, 1957, Multiple signal correlators: Geophysics, 22, 565–588, doi: 10.1190/1.1438390.GPYSA70016-8033AbstractGoogle Scholar
  • Nixon, M., 2008, Feature extraction and image processing: Academic Press.Google Scholar
  • Olson, J. V., 2004, Infrasound signal detection using the Fisher F-statistics: InfraMatics, 06, 1–7.Google Scholar
  • Panea, I., D. Draganov, C. A. Vidal, and V. Mocanu, 2014, Retrieval of reflections from ambient noise recorded in the Mizil area, Romania: Geophysics, 79, no. 3, Q31–Q42, doi: 10.1190/geo2013-0292.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Potvin, Y., and M. R. Hudyma, 2001, Seismic monitoring in highly mechanized hardrock mines in Canada and Australia: Keynote Address in the Proceedings of the Fifth International Symposium on Rockburst and Seismicity in Mines (RaSiM 5), 267–280.Google Scholar
  • Rost, S., 2002, Array seismology: Methods and applications: Reviews of Geophysics, 40, 1008, doi: 10.1029/2000RG000100.REGEEP8755-1209CrossrefWeb of ScienceGoogle Scholar
  • Shumway, R. H., 1971, On detecting a signal in N stationarily correlated noise series: Technometrics, 13, 499–519, doi: 10.1080/00401706.1971.10488814.TCMTA20040-1706CrossrefWeb of ScienceGoogle Scholar
  • Smets, P. S. M., J. D. Assink, A. Le Pichon, and L. G. Evers, 2016, ECMWF SSW forecast evaluation using infrasound: Journal of Geophysical Research: Atmospheres, 121, 4637–4650.CrossrefWeb of ScienceGoogle Scholar
  • Song, J., and M. R. Lyu, 2005, A Hough transform based line recognition method utilizing both parameter space and image space: Pattern Recognition, 38, 539–552, doi: 10.1016/j.patcog.2004.09.003.PTNRA80031-3203CrossrefWeb of ScienceGoogle Scholar
  • Verdon, J. P., J. M. Kendall, S. P. Hicks, and P. Hill, 2017, Using beamforming to maximize the detection capability of small, sparse seismometer arrays deployed to monitor oil field activities: Geophysical Prospecting, 65, 1582–1596, doi: 10.1111/1365-2478.12498.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Vidal, C. A., J. van der Neut, D. Draganov, G. Drijkoningen, and K. Wapenaar, 2011, Retrieval of reflections from ambient-noise field data using illumination diagnostics: 81st Annual International Meeting, SEG, Expanded Abstracts, 1613–1617.AbstractGoogle Scholar
  • Warpinski, N. R., 2009, Integrating microseismic monitoring with well completions, reservoir behavior, and rock mechanics: SPE Tight Gas Completions Conference, 15–17.CrossrefGoogle Scholar
  • Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe, 2013, Generic mapping tools: Improved version released: Eos, Transactions American Geophysical Union, 94, 409–410, doi: 10.1002/eost.v94.45.CrossrefGoogle Scholar
  • Williams-Stroud, S., J. Kilpatrick, and B. Cornette, 2010, Moving outside of the borehole: Characterizing natural fractures through microseismic monitoring Sherilyn: First Break, 28, 89–94.CrossrefGoogle Scholar
  • Yilmaz, Ö., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data: SEG.AbstractGoogle Scholar