This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Extracting low signal-to-noise ratio events with the Hough transform from sparse array data

Authors:

Low-frequency acoustic, i.e., infrasound, waves are measured by sparse arrays of microbarometers. Recorded data are processed by automatic detection algorithms based on array-processing techniques such as time-domain beam forming and f-k analysis. These algorithms use a signal-to-noise ratio (S/N) value as a detection criterion. In the case of high background noise or in the presence of multiple coinciding signals, the event’s S/N decreases and can be missed by automatic processing. In seismology, detecting low-S/N events with geophone arrays is a well-known problem. Whether it is in global earthquake monitoring or reservoir microseismic activity characterization, detecting low-S/N events is needed to better understand the sources or the medium of propagation. We use an image-processing technique as a postprocessing step in the automatic detection of low S/N events. In particular, we consider the use of the Hough transform (HT) technique to detect straight lines in beam-forming results, i.e., a back azimuth (BA) time series. The presence of such lines, due to similar BA values, can be indicative of a low-S/N event. A statistical framework is developed for the HT parameterization, which includes defining a threshold value for detection as well as evaluating the false alarm rate. The method is tested on synthetic data and five years of recorded infrasound from glaciers. It is shown that the automatic detection capability is increased by detecting low-S/N events while keeping a low false-alarm rate.

REFERENCES

  • Arrowsmith, S. J., R. Whitaker, S. R. Taylor, R. Burlacu, B. Stump, M. Hedlin, G. Randall, C. Hayward, and D. ReVelle, 2008, Regional monitoring of infrasound events using multiple arrays: Application to Utah and Washington State: Geophysical Journal International, 175, 291–300, doi: 10.1111/j.1365-246X.2008.03912.x.GJINEA0956-540X
  • Assink, J. D., R. Waxler, W. G. Frazier, and J. Lonzaga, 2013, The estimation of upper atmospheric wind model updates from infrasound data: Journal of Geophysical Research Atmospheres, 118, 707–710.
  • Boué, P., P. Roux, M. Campillo, and B. de Cacqueray, 2013, Double beamforming processing in a seismic prospecting context: Geophysics, 78, no. 3, V101–V108, doi: 10.1190/geo2012-0364.1.GPYSA70016-8033
  • Brown, D. J., R. Whitaker, B. L. N. Kennett, and C. Tarlowski, 2008, Automatic infrasonic signal detection using the Hough transform: Journal of Geophysical Research, 113, D17.JGREA20148-0227
  • Carlson, B. D., E. D. Evans, S. L. Wilson, and M. I. T. Lincoln, 1994, Search radar detection and track with the Hough transform. Part III: Detection performance with binary integration: IEEE Transactions on Aerospace and Electronic Systems, 30, 116–125, doi: 10.1109/7.250412.IEARAX0018-9251
  • Chambers, K., J. Kendall, S. Brandsberg-Dahl, and J. Rueda, 2010, Testing the ability of surface arrays to monitor microseismic activity: Geophysical Prospecting, 58, 821–830, doi: 10.1111/j.1365-2478.2010.00893.x.GPPRAR0016-8025
  • Draganov, D., X. Campman, J. Thorbecke, A. Verdel, and K. Wapenaar, 2013, Seismic exploration-scale velocities and structure from ambient seismic noise (>1  Hz): Journal of Geophysical Research: Solid Earth, 118, 4345–4360.
  • Drob, D. P., J. M. Picone, and M. Garcés, 2003, Global morphology of infrasound propagation: Journal of Geophysical Research: Atmospheres, 108, doi: 10.1029/2002JD003307.
  • Duda, R. O., and P. E. Hart, 1972, Use of the Hough transformation to detect lines and curves in pictures: Communications of the ACM, 15, 11–15, doi: 10.1145/361237.361242.CACMA20001-0782
  • Elazar, M., 1995, Search radar track-before-detect using the Hough transform: Ph.D. thesis, Calhoun.
  • Evers, L. G., 2008, The inaudible symphony: On the detection and source identification of atmospheric infrasound: Ph.D. thesis, TU Delft, Delft University of Technology.
  • Evers, L. G., L. Ceranna, H. W. Haak, A. Le Pichon, and R. W. Whitaker, 2007, A seismoacoustic analysis of the gas-pipeline explosion near Ghislenghien in Belgium: Bulletin of the Seismological Society of America, 97, 417–425, doi: 10.1785/0120060061.BSSAAP0037-1106
  • Evers, L. G., and H. W. Haak, 2005, The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna: Journal of Atmospheric and Solar-Terrestrial Physics, 67, 259–268, doi: 10.1016/j.jastp.2004.09.002.JASPF31364-6826
  • Forghani, F., and R. Snieder, 2010, Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry: The Leading Edge, 29, 790–794, doi: 10.1190/1.3462779.
  • Furmanski, C. S., and S. A. Engel, 2000, An oblique effect in human primary visual cortex: Nature Neuroscience, 3, 535–536, doi: 10.1038/75702.NANEFN1097-6256
  • Ge, M., 2005, Efficient mine microseismic monitoring: International Journal of Coal Geology, 64, 44–56, doi: 10.1016/j.coal.2005.03.004.IJCGDE0166-5162
  • Gibbons, S. J., and F. Ringdal, 2006, The detection of low magnitude seismic events using array-based waveform correlation: Geophysical Journal International, 165, 149–166, doi: 10.1111/j.1365-246X.2006.02865.x.GJINEA0956-540X
  • Gibbons, S. J., and F. Ringdal, 2012, Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector: IEEE Transactions on Geoscience and Remote Sensing, 50, 1897–1909, doi: 10.1109/TGRS.2011.2170429.IGRSD20196-2892
  • Hall, P., N. Tajvidi, and P. E. Malin, 2006, Locating lines among scattered points: Bernoulli, 12, 821–839.
  • Harmon, N., P. Gerstoft, C. A. Rychert, G. A. Abers, M. S. de la Cruz, and K. M. Fischer, 2008, Phase velocities from seismic noise using beamforming and cross correlation in Costa Rica and Nicaragua: Geophysical Research Letters, 35, 1–6, doi: 10.1029/2008GL035387.GPRLAJ0094-8276
  • Le Pichon, A., E. Blanc, and A. Hauchecorne, 2010, Infrasound monitoring for atmospheric studies: Springer Science & Business Media.
  • Le Pichon, A., J. Vergoz, E. Blanc, J. Guilbert, L. Ceranna, L. Evers, and N. Brachet, 2009, Assessing the performance of the international monitoring system’s infrasound network: Geographical coverage and temporal variabilities: Journal of Geophysical Research: Atmospheres, 114, D8.
  • Lezama, J., J.-M. Morel, G. Randall, and R. G. von Gioi, 2015, A contrario 2D point alignment detection: IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 499–512, doi: 10.1109/TPAMI.2014.2345389.ITPIDJ0162-8828
  • Maxwell, S. C., J. Rutledge, R. Jones, and M. Fehler, 2010, Petroleum reservoir characterization using downhole microseismic monitoring: Geophysics, 75, no. 5, 75A129–75A137, doi: 10.1190/1.3477966.GPYSA70016-8033
  • Melton, B. S., and L. F. Bailey, 1957, Multiple signal correlators: Geophysics, 22, 565–588, doi: 10.1190/1.1438390.GPYSA70016-8033
  • Nixon, M., 2008, Feature extraction and image processing: Academic Press.
  • Olson, J. V., 2004, Infrasound signal detection using the Fisher F-statistics: InfraMatics, 06, 1–7.
  • Panea, I., D. Draganov, C. A. Vidal, and V. Mocanu, 2014, Retrieval of reflections from ambient noise recorded in the Mizil area, Romania: Geophysics, 79, no. 3, Q31–Q42, doi: 10.1190/geo2013-0292.1.GPYSA70016-8033
  • Potvin, Y., and M. R. Hudyma, 2001, Seismic monitoring in highly mechanized hardrock mines in Canada and Australia: Keynote Address in the Proceedings of the Fifth International Symposium on Rockburst and Seismicity in Mines (RaSiM 5), 267–280.
  • Rost, S., 2002, Array seismology: Methods and applications: Reviews of Geophysics, 40, 1008, doi: 10.1029/2000RG000100.REGEEP8755-1209
  • Shumway, R. H., 1971, On detecting a signal in N stationarily correlated noise series: Technometrics, 13, 499–519, doi: 10.1080/00401706.1971.10488814.TCMTA20040-1706
  • Smets, P. S. M., J. D. Assink, A. Le Pichon, and L. G. Evers, 2016, ECMWF SSW forecast evaluation using infrasound: Journal of Geophysical Research: Atmospheres, 121, 4637–4650.
  • Song, J., and M. R. Lyu, 2005, A Hough transform based line recognition method utilizing both parameter space and image space: Pattern Recognition, 38, 539–552, doi: 10.1016/j.patcog.2004.09.003.PTNRA80031-3203
  • Verdon, J. P., J. M. Kendall, S. P. Hicks, and P. Hill, 2017, Using beamforming to maximize the detection capability of small, sparse seismometer arrays deployed to monitor oil field activities: Geophysical Prospecting, 65, 1582–1596, doi: 10.1111/1365-2478.12498.GPPRAR0016-8025
  • Vidal, C. A., J. van der Neut, D. Draganov, G. Drijkoningen, and K. Wapenaar, 2011, Retrieval of reflections from ambient-noise field data using illumination diagnostics: 81st Annual International Meeting, SEG, Expanded Abstracts, 1613–1617.
  • Warpinski, N. R., 2009, Integrating microseismic monitoring with well completions, reservoir behavior, and rock mechanics: SPE Tight Gas Completions Conference, 15–17.
  • Wessel, P., W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe, 2013, Generic mapping tools: Improved version released: Eos, Transactions American Geophysical Union, 94, 409–410, doi: 10.1002/eost.v94.45.
  • Williams-Stroud, S., J. Kilpatrick, and B. Cornette, 2010, Moving outside of the borehole: Characterizing natural fractures through microseismic monitoring Sherilyn: First Break, 28, 89–94.
  • Yilmaz, Ö., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data: SEG.