ABSTRACT
Incorporating anisotropy and elasticity into least-squares migration is an important step toward recovering accurate amplitudes in seismic imaging. An efficient way to extract reflectivity information from anisotropic elastic wavefields exploits properties of the energy norm. We derive linearized modeling and migration operators based on the energy norm to perform anisotropic least-squares reverse time migration (LSRTM) describing subsurface reflectivity and correctly predicting observed data without costly decomposition of wave modes. Imaging operators based on the energy norm have no polarity reversal at normal incidence and remove backscattering artifacts caused by sharp interfaces in the earth model, thus accelerating convergence and generating images of higher quality when compared with images produced by conventional methods. With synthetic and field data experiments, we find that our elastic LSRTM method generates high-quality images that predict the data for arbitrary anisotropy, without the complexity of wave-mode decomposition and with a high convergence rate.
REFERENCES
- 2002, Quantitative seismology, 2nd ed.: University Science Books.Google Scholar ,
- 2016, Imaging condition for elastic reverse time migration:
86th Annual International Meeting, SEG , Expanded Abstracts,3959–3965 .AbstractGoogle Scholar , - 2009, Fast least-squares migration with a deblurring filter: Geophysics, 74, no. 6,
WCA83–WCA93 , doi:10.1190/1.3155162 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1983, Reverse time migration: Geophysics, 48,
1514–1524 , doi:10.1190/1.1441434 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1987, Elastic reverse-time migration: Geophysics, 52,
1365–1375 , doi:10.1190/1.1442249 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1999, An optimal true-amplitude least-squares prestack depth-migration operator: Geophysics, 64,
508–515 , doi:10.1190/1.1444557 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2014, Fast algorithms for elastic-wave-mode separation and vector decomposition using low-rank approximation for anisotropic media: Geophysics, 79, no. 4,
C97–C110 , doi:10.1190/geo2014-0032.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publications.Google Scholar ,
- 2010, 3D multisource least-squares reverse-time migration:
80th Annual International Meeting, SEG , Expanded Abstracts,3120–3124 .AbstractGoogle Scholar , - 2012, Plane-wave least-squares reverse time migration:
82nd Annual International Meeting, SEG , Expanded Abstracts, doi:10.1190/segam2012-0382.1 .AbstractGoogle Scholar , - 2012, Least-squares reverse time migration: Towards true amplitude imaging and improving the resolution:
82nd Annual International Meeting, SEG , Expanded Abstracts, doi:10.1190/segam2012-1488.1 .AbstractGoogle Scholar , - 2014, Relatively amplitude-preserved ADCIGs based on elastic RTM by modifying the initial condition as the boundary condition:
84th Annual International Meeting, SEG , Expanded Abstracts,1888–1893 .Google Scholar , - 2012, Source and receiver illumination compensation for reverse-time migration:
74th Annual International Conference and Exhibition, EAGE , Extended Abstracts, doi:10.3997/2214-4609.20148793 .CrossrefGoogle Scholar , - 2017, Elastic least-squares reverse time migration: Geophysics, 82, no. 4,
S315–S325 , doi:10.1190/geo2016-0564.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2014, Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation: Geophysics, 79, no. 6,
S251–S262 , doi:10.1190/geo2013-0414.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, The role of reverse time migration in imaging and model estimation: The Leading Edge, 28,
436–441 , doi:10.1190/1.3112761 .AbstractGoogle Scholar , - 2016, Elastic least-squares reverse time migration:
86th Annual International Meeting, SEG , Expanded Abstracts,3959–3965 .AbstractGoogle Scholar , - 2013, Madagascar: Open-source software project for multidimensional data analysis and reproducible computational experiments: Journal of Open Research Software, 1,
e8 , doi:10.5334/jors.ag .CrossrefGoogle Scholar , - 1996, Matrix computations, 3rd ed.: John Hopkins University Press.Google Scholar ,
- 1994, Foundations of anisotropy for exploration seismics: Elsevier Science Serials.Google Scholar ,
- 1952, Methods of conjugate gradients for solving linear systems: Journal of Research of the National Bureau of Standards, 49,
409–436 , doi:10.6028/jres.049.044 .CrossrefWeb of ScienceGoogle Scholar , - 2014, A method for correcting acoustic finite-difference amplitudes for elastic effects: Geophysics, 79, no. 4,
T243–T255 , doi:10.1190/geo2013-0335.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1998, Elastic reverse time migration of marine walkaway vertical seismic profiling data: Geophysics, 63,
1685–1695 , doi:10.1190/1.1444464 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2016, Plane-wave least-squares reverse time migration in complex VTI media:
86th Annual International Meeting, SEG , Expanded Abstracts,441–446 .AbstractGoogle Scholar , - 2003, Least-squares wave-equation migration for AVO/AVA inversion: Geophysics, 68,
262–273 , doi:10.1190/1.1543212 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1983, The seismic inverse problem as a sequence of before stack migrations:
Proceedings of the Conference on Inverse Scattering, Theory and Application, SIAM ,206–220 .Google Scholar , - 1984, Principle of reverse-time migration: Geophysics, 49,
581–583 , doi:10.1190/1.1441693 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, Comparison of elastic and acoustic reverse-time migration on the synthetic elastic Marmousi-II OBC dataset:
79th Annual International Meeting, SEG , Expanded Abstracts,2799–2803 .AbstractGoogle Scholar , - 1983, Migration by extrapolation of time dependent boundary values: Geophysical Prospecting, 31,
413–420 , doi:10.1111/j.1365-2478.1983.tb01060.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 1999, Least-squares migration of incomplete reflection data: Geophysics, 64,
208–221 , doi:10.1190/1.1444517 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2012, Reverse time migration of marine models with elastic wave equation and amplitude preservation:
82nd Annual International Meeting, SEG , Expanded Abstracts, doi:10.1190/segam2012-1107.1 .AbstractGoogle Scholar , - 2004, Frequency-domain finite-difference amplitude-preserving migration: Geophysical Journal International, 157,
975–987 , doi:10.1111/j.1365-246X.2004.02282.x .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 2017, Least-squares reverse time migration in elastic media: Geophysical Journal International, 208,
1103–1125 , doi:10.1093/gji/ggw443 .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 2003, Illumination-based normalization for wave-equation depth migration: Geophysics, 68,
1371–1379 , doi:10.1190/1.1598130 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2017, Anisotropic elastic wavefield imaging using the energy norm: Geophysics, 82, no. 3,
S225–S234 , doi:10.1190/geo2016-0424.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1987, Tomographic inversion via the conjugate gradient method: Geophysics, 52,
179–185 , doi:10.1190/1.1442293 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2015, Elastic wave-vector decomposition in orthorhombic media:
85th Annual International Meeting, SEG , Expanded Abstracts,498–503 .AbstractGoogle Scholar , - 2015, Preconditioning least-squares RTM in viscoacoustic media by Q-compensated RTM:
85th Annual International Meeting, SEG , Expanded Abstracts,3959–3965 .AbstractGoogle Scholar , - 2007, 3D PP/PS prestack depth migration on the Volve field: First Break, 25,
43–47 .CrossrefGoogle Scholar , - 2009, Target-oriented wave-equation least-squares migration/inversion with phase-encoded hessian: Geophysics, 74, no. 6,
WCA95–WCA107 , doi:10.1190/1.3204768 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1988, Theoretical background for the inversion of seismic waveforms including elasticity and attenuation: Pure and Applied Geophysics, 128,
365–399 , doi:10.1007/BF01772605 .PAGYAV 0033-4553 CrossrefWeb of ScienceGoogle Scholar , - 1986, Weak elastic anisotropy: Geophysics, 51,
1954–1966 , doi:10.1190/1.1442051 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2005, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels: Geophysical Journal International, 160,
195–216 , doi:10.1111/j.1365-246X.2004.02453.x .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 2016, Up/down and P/S decompositions of elastic wavefields using complex seismic traces with applications to calculating Poynting vectors and angle-domain common-image gathers from reverse time migrations: Geophysics, 81, no. 4,
S181–S194 , doi:10.1190/geo2015-0456.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2016, Elastic least squares reverse time migration:
86th Annual International Meeting, SEG , Expanded Abstracts,3959–3965 .AbstractGoogle Scholar , - 2007, Elastic wavefield imaging with scalar and vector potentials:
77th Annual International Meeting, SEG , Expanded Abstracts,2150–2154 .AbstractGoogle Scholar , - 2008, Isotropic angle-domain elastic reverse-time migration: Geophysics, 73, no. 6,
S229–S239 , doi:10.1190/1.2981241 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, Elastic wave-mode separation for VTI media: Geophysics, 74, no. 5,
WB19–WB32 , doi:10.1190/1.3184014 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2011, Elastic wave-mode separation for tilted transverse isotropy media: Geophysical Prospecting, 60,
29–48 , doi:10.1111/j.1365-2478.2011.00964.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2012, Least-squares reverse-time migration:
82nd Annual International Meeting, SEG , Expanded Abstracts, doi:10.1190/segam2012-1425.1 .AbstractGoogle Scholar , - 2010, 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media: Geophysics, 75, no. 3,
D13–D26 , doi:10.1190/1.3431045 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, Practical issues in reverse time migration: True amplitude gathers, noise removal and harmonic source encoding: First Break, 27,
53–59 , doi:10.3997/1365-2397.2009002 .CrossrefGoogle Scholar , - 2009, Elastic imaging and time-lapse migration based on adjoint methods: Geophysics, 74, no. 6,
WCA167–WCA177 , doi:10.1190/1.3261747 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar ,