This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

We have evaluated a two-step Bayesian algorithm for seismic-reservoir characterization, which, thanks to some simplifying assumptions, is computationally very efficient. The applicability and reliability of this method are assessed by comparison with a more sophisticated and computer-intensive Markov-chain Monte Carlo (MCMC) algorithm, which in a single loop directly estimates petrophysical properties and lithofluid facies from prestack data. The two-step method first combines a linear rock-physics model (RPM) with the analytical solution of a linearized amplitude versus angle (AVA) inversion, to directly estimate the petrophysical properties, and related uncertainties, from prestack data under the assumptions of a Gaussian prior model and weak elastic contrasts at the reflecting interface. In particular, we use an empirical, linear RPM, properly calibrated for the investigated area, to reparameterize the linear time-continuous P-wave reflectivity equation in terms of petrophysical contrasts instead of elastic constants. In the second step, a downward 1D Markov-chain prior model is used to infer the lithofluid classes from the outcomes of the first step. The single-loop (SL) MCMC algorithm uses a convolutional forward modeling based on the exact Zoeppritz equations, and it adopts a nonlinear RPM. Moreover, it assumes a more realistic Gaussian mixture distribution for the petrophysical properties. Both approaches are applied on an onshore 3D seismic data set for the characterization of a gas-bearing, clastic reservoir. Notwithstanding the differences in the forward-model parameterization, in the considered RPM, and in the assumed a priori probability density functions, the two methods yield maximum a posteriori solutions that are consistent with well-log data, although the Gaussian mixture assumption adopted by the SL method slightly improves the description of the multimodal behavior of the petrophysical parameters. However, in the considered reservoir, the main difference between the two approaches remains the very different computational times, the SL method being much more computationally intensive than the two-step approach.

REFERENCES

  • Agostinetti, N. P., and A. Malinverno, 2010, Receiver function inversion by trans-dimensional Monte Carlo sampling: Geophysical Journal International, 181, 858–872, doi: 10.1111/j.1365-246X.2010.04530.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., and F. Ciabarri, 2017a, Assessment of different approaches to rock-physics modeling: A case study from offshore Nile Delta: Geophysics, 82, no. 1, MR15–MR25, doi: 10.1190/geo2016-0194.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Aleardi, M., and F. Ciabarri, 2017b, Application of different classification methods for litho-fluid facies prediction: A case study from offshore Nile Delta: Journal of Geophysics and Engineering, 14, 1087–1102, doi: 10.1088/1742-2140/aa7301.CrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., F. Ciabarri, T. Gukov, M. Giussani, and A. Mazzotti, 2017b, A single-step Bayesian petrophysical inversion algorithm based on a petrophysical reformulation of the P-wave reflection coefficients: 79th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201700902.CrossrefGoogle Scholar
  • Aleardi, M., F. Ciabarri, and A. Mazzotti, 2017a, Probabilistic estimation of reservoir properties by means of wide-angle AVA inversion and a petrophysical reformulation of the Zoeppritz equations: Journal of Applied Geophysics, 147, 28–41, doi: 10.1016/j.jappgeo.2017.10.002.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., and A. Mazzotti, 2014, A feasibility study on the expected seismic AVA signatures of deep fractured geothermal reservoirs in an intrusive basement: Journal of Geophysics and Engineering, 11, 065008, doi: 10.1088/1742-2132/11/6/065008.CrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., and A. Mazzotti, 2017, 1D elastic full-waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm-gibbs sampler approach: Geophysical Prospecting, 65, 64–85, doi: 10.1111/1365-2478.12397.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., A. Mazzotti, A. Tognarelli, S. Ciuffi, and M. Casini, 2015, Seismic and well log characterization of fractures for geothermal exploration in hard rocks: Geophysical Journal International, 203, 270–283, doi: 10.1093/gji/ggv286.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., and A. Tognarelli, 2016, The limits of narrow and wide-angle AVA inversions for high Vp/Vs ratios: An application to elastic seabed characterization: Journal of Applied Geophysics, 131, 54–68, doi: 10.1016/j.jappgeo.2016.05.009.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Aleardi, M., A. Tognarelli, and A. Mazzotti, 2016, Characterisation of shallow marine sediments using high-resolution velocity analysis and genetic-algorithm-driven 1D elastic full-waveform inversion: Near Surface Geophysics, 14, 449–460, doi: 10.3997/1873-0604.2016030.CrossrefWeb of ScienceGoogle Scholar
  • Alpak, F. O., C. Torres-Verdín, and T. M. Habashy, 2006, Petrophysical inversion of borehole array-induction logs: Part I — Numerical examples: Geophysics, 71, no. 4, F101–F119, doi: 10.1190/1.2213358.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Amaliksen, I., 2014, Bayesian inversion of time-lapse seismic data using bimodal prior models: Master’s thesis, Norwegian University of Science and Technology.Google Scholar
  • Aster, R. C., B. Borchers, and C. H. Thurber, 2011, Parameter estimation and inverse problem: Elsevier.Google Scholar
  • Avseth, P., T. Mukerji, and G. Mavko, 2005, Quantitative seismic interpretation. Applying rock physics tools to reduce interpretation risk: Cambridge University Press.CrossrefGoogle Scholar
  • Bachrach, R., M. Beller, C. C. Liu, J. Perdomo, D. Shelander, N. Dutta, and M. Benabentos, 2004, Combining rock physics analysis, full waveform prestack inversion and high-resolution seismic interpretation to map lithology units in deep water: A Gulf of Mexico case study: The Leading Edge, 23, 378–383, doi: 10.1190/1.1729224.AbstractGoogle Scholar
  • Bongajum, E. L., J. Boisvert, and M. D. Sacchi, 2013, Bayesian linearized seismic inversion with locally varying spatial anisotropy: Journal of Applied Geophysics, 88, 31–41, doi: 10.1016/j.jappgeo.2012.10.001.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Bosch, M., 2004, The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction: Geophysics, 69, 1272–1282, doi: 10.1190/1.1801944.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bosch, M., L. Cara, J. Rodrigues, A. Navarro, and M. Díaz, 2007, A Monte Carlo approach to the joint estimation of reservoir and elastic parameters from seismic amplitudes: Geophysics, 72, no. 6, O29–O39, doi: 10.1190/1.2783766.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bosch, M., T. Mukerji, and E. F. Gonzalez, 2010, Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review: Geophysics, 75, no. 5, 75A165–75A176, doi: 10.1190/1.3478209.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Buland, A., and H. Omre, 2003, Bayesian linearized AVO inversion: Geophysics, 68, 185–198, doi: 10.1190/1.1543206.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Caers, J., and T. B. Hoffman, 2006, The probability perturbation method: A new look at Bayesian inverse modeling: Mathematical Geology, 38, 81–100, doi: 10.1007/s11004-005-9005-9.MATGED0882-8121CrossrefGoogle Scholar
  • Castagna, J. P., and H. W. Swan, 1997, Principles of AVO crossplotting: The Leading Edge, 16, 337–344, doi: 10.1190/1.1437626.AbstractGoogle Scholar
  • Chiappa, F., and A. Mazzotti, 2009, Estimation of petrophysical parameters by linearized inversion of angle domain pre‐stack data: Geophysical Prospecting, 57, 413–426, doi: 10.1111/j.1365-2478.2008.00742.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Doyen, P., 2007, Seismic reservoir characterization: EAGE.Google Scholar
  • Duijndam, A. J. W., 1988, Bayesian estimation in seismic inversion. Part I: Principles: Geophysical Prospecting, 36, 878–898, doi: 10.1111/j.1365-2478.1988.tb02198.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Eidsvik, J., P. Avseth, H. Omre, T. Mukerji, and G. Mavko, 2004, Stochastic reservoir characterization using prestack seismic data: Geophysics, 69, 978–993, doi: 10.1190/1.1778241.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fernandez Martinez, J. L., M. Z. Fernandez Muniz, and M. J. Tompkins, 2012, On the topography of the cost functional in linear and nonlinear inverse problems: Geophysics, 77, no. 1, W1–W15, doi: 10.1190/geo2011-0341.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, 2013, Bayesian data analysis: CRC Press.CrossrefGoogle Scholar
  • Gong, T., and G. A. McMechan, 2016, Target-oriented linear least squares and nonlinear, trust-region Newton inversions of plane waves using AVA and PVA data for elastic model parameters: Geophysics, 81, no. 5, R325–R338, doi: 10.1190/geo2015-0471.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grana, D., 2016, Bayesian linearized rock-physics inversion: Geophysics, 81, no. 6, D625–D641, doi: 10.1190/geo2016-0161.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grana, D., and E. Della Rossa, 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion: Geophysics, 75, no. 3, O21–O37, doi: 10.1190/1.3386676.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grana, D., T. Fjeldstad, and H. Omre, 2017, Bayesian Gaussian mixture linear inversion for geophysical inverse problems: Mathematical Geosciences, 49, 493–515, doi: 10.1007/s11004-016-9671-9.CrossrefWeb of ScienceGoogle Scholar
  • Grana, D., T. Mukerji, J. Dvorkin, and G. Mavko, 2012, Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method: Geophysics, 77, no. 4, M53–M72, doi: 10.1190/geo2011-0417.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gouveia, W. P., and J. A. Scales, 1998, Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis: Journal of Geophysical Research: Solid Earth, 103, 2759–2779, doi: 10.1029/97JB02933.CrossrefWeb of ScienceGoogle Scholar
  • Gunning, J., and M. E. Glinsky, 2007, Detection of reservoir quality using Bayesian seismic inversion: Geophysics, 72, no. 3, R37–R49, doi: 10.1190/1.2713043.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Hastie, T., R. Tibshirani, and J. Friedman, 2002, The elements of statistical learning: Springer.Google Scholar
  • Hastings, W. K., 1970, Monte Carlo sampling methods using Markov chains and their applications: Biometrika, 57, 97–109, doi: 10.1093/biomet/57.1.97.BIOKAX0006-3444CrossrefWeb of ScienceGoogle Scholar
  • Jalalalhosseini, S. M., H. Ali, and M. Mostafazadeh, 2014, Predicting porosity by using seismic multi-attributes and well data and combining these available data by geostatistical methods in a South Iranian Oil Field: Petroleum Science and Technology, 32, 29–37, doi: 10.1080/10916466.2011.584102.CrossrefWeb of ScienceGoogle Scholar
  • Larsen, A. L., M. Ulvmoen, H. Omre, and A. Buland, 2006, Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model: Geophysics, 71, no. 5, R69–R78, doi: 10.1190/1.2245469.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, D., and F. Zhang, 2015, Direct estimation of petrophysical properties based on AVO inversion: 85th Annual International Meeting, SEG, Expanded Abstracts, 2886–2890.Google Scholar
  • Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools for seismic analysis of porous media: Cambridge university press.CrossrefGoogle Scholar
  • Mazzotti, A., and E. Zamboni, 2003, Petrophysical inversion of AVA data: Geophysical Prospecting, 51, 517–530, doi: 10.1046/j.1365-2478.2003.00389.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Mosegaard, K., 2006, Monte Carlo analysis of inverse problem: Ph.D. thesis, Copenhagen University.Google Scholar
  • Mosegaard, K., and A. Tarantola, 1995, Monte Carlo sampling of solutions to inverse problems: Journal of Geophysical Research: Solid Earth, 100, 12431–12447, doi: 10.1029/94JB03097.CrossrefWeb of ScienceGoogle Scholar
  • Rimstad, K., and H. Omre, 2010, Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction: Geophysics, 75, no. 4, R93–R108, doi: 10.1190/1.3463475.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sajeva, A., M. Aleardi, B. Galuzzi, E. Stucchi, E. Spadavecchia, and A. Mazzotti, 2017a, Comparing the performances of four stochastic optimisation methods using analytic objective functions, 1D elastic full-waveform inversion and residual static computation: Geophysical Prospecting, 65, 322–346, doi: 10.1111/1365-2478.12532.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sajeva, A., M. Aleardi, and A. Mazzotti, 2017b, Genetic algorithm full-waveform inversion, uncertainty estimation and validation of the results: Accepted for publication: Bollettino di Geofisica Teorica ed Applicata, 58, no. 4, 395–414, doi: 10.4430/bgta0199.CrossrefWeb of ScienceGoogle Scholar
  • Sajeva, A., M. Aleardi, E. Stucchi, N. Bienati, and A. Mazzotti, 2016, Estimation of acoustic macro models using a genetic full-waveform inversion: Applications to the Marmousi model: Geophysics, 81, no. 4, R173–R184, doi: 10.1190/geo2015-0198.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sambridge, M., 1999, Geophysical inversion with a neighbourhood algorithm — II. Appraising the ensemble: Geophysical Journal International, 138, 727–746, doi: 10.1046/j.1365-246x.1999.00900.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Sambridge, M., and K. Mosegaard, 2002, Monte Carlo methods in geophysical inverse problems: Reviews of Geophysics, 40, 451, doi: 10.1029/2000RG000089.REGEEP8755-1209CrossrefWeb of ScienceGoogle Scholar
  • Sauvageau, M, E. Gloaguen, M. Claprood, R. Lefebvre, and M. Bêche, 2014, Multimodal reservoir porosity simulation: An application to a tight oil reservoir: Journal of Applied Geophysics, 107, 71–79, doi: 10.1016/j.jappgeo.2014.05.007.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Sen, M. K., and P. L. Stoffa, 1996, Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical inversion: Geophysical Prospecting, 44, 313–350, doi: 10.1111/j.1365-2478.1996.tb00152.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Shahraeeni, M. S., and A. Curtis, 2011, Fast probabilistic nonlinear petrophysical inversion: Geophysics, 76, no. 2, E45–E58, doi: 10.1190/1.3540628.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Skopintseva, L., A. Aizenberg, M. Ayzenberg, M. Landrø, and T. Nefedkina, 2012, The effect of interface curvature on AVO inversion of near-critical and postcritical PP-reflections: Geophysics, 77, no. 5, N1–N16, doi: 10.1190/geo2011-0298.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Stolt, R. H., and A. B. Weglein, 1985, Migration and inversion of seismic data: Geophysics, 50, 2458–2472, doi: 10.1190/1.1441877.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.CrossrefGoogle Scholar
  • Ulvmoen, M., and H. Omre, 2010, Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1 — Methodology: Geophysics, 75, no. 2, R21–R35, doi: 10.1190/1.3294570.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Veire, H. H., H. G. Borgos, and M. Landrø, 2006, Stochastic inversion of pressure and saturation changes from time-lapse AVO data: Geophysics, 71, no. 5, C81–C92, doi: 10.1190/1.2235858.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zunino, A., K. Mosegaard, K. Lange, Y. Melnikova, and T. Mejer Hansen, 2014, Monte Carlo reservoir analysis combining seismic reflection data and informed priors: Geophysics, 80, no. 1, R31–R41, doi: 10.1190/geo2014-0052.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar