This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.

REFERENCES

  • Baumstein, A., W. Ross, and S. Lee, 2011, Simultaneous source elastic inversion of surface waves: 73rd Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20149055.CrossrefGoogle Scholar
  • Berenger, J.-P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114, 185–200, doi: 10.1006/jcph.1994.1159.JCTPAH0021-9991CrossrefWeb of ScienceGoogle Scholar
  • Bharadwaj, P., W. Mulder, and G. Drijkoningen, 2016, Full waveform inversion with an auxiliary bump functional: Geophysical Journal International, 206, 1076–1092, doi: 10.1093/gji/ggw129.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Borisov, D., and S. C. Singh, 2015, Three-dimensional elastic full waveform inversion in a marine environment using multicomponent ocean-bottom cables: A synthetic study: Geophysical Journal International, 201, 1215–1234, doi: 10.1093/gji/ggv048.GJINEA0956-540XCrossrefGoogle Scholar
  • Borisov, D., A. Stopin, and R. Plessix, 2014, Acoustic pseudo-density full waveform inversion in the presence of hard thin beds: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20141216.CrossrefGoogle Scholar
  • Bozdağ, E., J. Trampert, and J. Tromp, 2011, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements: Geophysical Journal International, 185, 845–870, doi: 10.1111/j.1365-246X.2011.04970.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Brossier, R., S. Operto, and J. Virieux, 2009, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74, no. 6, WCC105–WCC118, doi: 10.1190/1.3215771.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1.1443880.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Chavent, G., 1974, Identification of functional parameters in partial differential equations: Joint Automatic Control Conference, 155–156.Google Scholar
  • Clayton, R., and B. Engquist, 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America, 67, 1529–1540.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Geli, L., P.-Y. Bard, and B. Jullien, 1988, The effect of topography on earthquake ground motion: A review and new results: Bulletin of the Seismological Society of America, 78, 42–63.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Geuzaine, C., and J.-F. Remacle, 2009, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities: International Journal for Numerical Methods in Engineering, 79, 1309–1331, doi: 10.1002/nme.v79:11.IJNMBH0029-5981CrossrefWeb of ScienceGoogle Scholar
  • Hughes, T. J., 2012, The finite element method: Linear static and dynamic finite element analysis: Courier Corporation.Google Scholar
  • Komatitsch, D., F. Coutel, and P. Mora, 1996, Tensorial formulation of the wave equation for modeling curved interfaces: Geophysical Journal International, 127, 156–168, doi: 10.1111/j.1365-246X.1996.tb01541.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Komatitsch, D., and R. Martin, 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation: Geophysics, 72, no. 5, SM155–SM167, doi: 10.1190/1.2757586.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Komatitsch, D., D. Michéa, and G. Erlebacher, 2009, Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA: Journal of Parallel and Distributed Computing, 69, 451–460, doi: 10.1016/j.jpdc.2009.01.006.JPDCER0743-7315CrossrefWeb of ScienceGoogle Scholar
  • Komatitsch, D., and J. Tromp, 1999, Introduction to the spectral element method for three-dimensional seismic wave propagation: Geophysical Journal International, 139, 806–822, doi: 10.1046/j.1365-246x.1999.00967.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Komatitsch, D., and J.-P. Vilotte, 1998, The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures: Bulletin of the Seismological Society of America, 88, 368–392.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Conference on inverse scattering: theory and application, Society for Industrial and Applied Mathematics, 206–220.Google Scholar
  • Lee, S.-J., D. Komatitsch, B.-S. Huang, and J. Tromp, 2009, Effects of topography on seismic-wave propagation: An example from northern Taiwan: Bulletin of the Seismological Society of America, 99, 314–325, doi: 10.1785/0120080020.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Liu, D. C., and J. Nocedal, 1989, On the limited memory BFGS method for large scale optimization: Mathematical programming, 45, 503–528, doi: 10.1007/BF01589116.MHPGA41436-4646CrossrefWeb of ScienceGoogle Scholar
  • Masoni, I., R. Brossier, J. Virieux, and J. Boelle, 2013, Alternative misfit functions for FWI applied to surface waves: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20130297.CrossrefGoogle Scholar
  • Modrak, R., and J. Tromp, 2016, Seismic waveform inversion best practices: Regional, global and exploration test cases: Geophysical Journal International, 206, 1864–1889, doi: 10.1093/gji/ggw202.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nazarian, S., and K. Stokoe, 1984, In situ shear wave velocities from spectral analysis of surface waves: 8th Conference on Earthquake Engineering, 31–38.Google Scholar
  • Nocedal, J., 1980, Updating quasi-Newton matrices with limited storage: Mathematics of Computation, 35, 773, doi: 10.1090/S0025-5718-1980-0572855-7.MCMPAF0025-5718CrossrefWeb of ScienceGoogle Scholar
  • Nuber, A., E. Manukyan, and H. Maurer, 2016, Ground topography effects on near-surface elastic full waveform inversion: Geophysical Journal International, 207, 67–71, doi: 10.1093/gji/ggw267.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Oldenborger, G. A., P. S. Routh, and M. D. Knoll, 2007, Model reliability for 3D electrical resistivity tomography: Application of the volume of investigation index to a time-lapse monitoring experiment: Geophysics, 72, no. 4, F167–F175, doi: 10.1190/1.2732550.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Oldenburg, D. W., and Y. Li, 1999, Estimating depth of investigation in DC resistivity and IP surveys: Geophysics, 64, 403–416, doi: 10.1190/1.1444545.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Oristaglio, M., 2012, SEAM update: SEAM Phase II-surface waves in land seismic exploration: The Leading Edge, 31, 1130–1132, doi: 10.1190/tle31101130.1.AbstractGoogle Scholar
  • Park, C. B., R. D. Miller, and J. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808, doi: 10.1190/1.1444590.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Peter, D., D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher, F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini, and J. Tromp, 2011, Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes: Geophysical Journal International, 186, 721–739, doi: 10.1111/j.1365-246X.2011.05044.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246X.2006.02978.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model: Geophysics, 64, 888–901, doi: 10.1190/1.1444597.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sears, T. J., P. J. Barton, and S. C. Singh, 2010, Elastic full waveform inversion of multi- component ocean-bottom cable seismic data: Application to Alba Field, UK North Sea: Geophysics, 75, no. 6, R109–R119, doi: 10.1190/1.3484097.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Shipp, R. M., and S. C. Singh, 2002, Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data: Geophysical Journal International, 151, 325–344, doi: 10.1046/j.1365-246X.2002.01645.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Sirgue, L., O. Barkved, J. Dellinger, J. Etgen, U. Albertin, and J. Kommedal, 2010, The matic set: Full waveform inversion: The next leap forward in imaging at Valhall: First Break, 28, 65–70, doi: 10.3997/1365-2397.2010012.CrossrefGoogle Scholar
  • Socco, L. V., S. Foti, and D. Boiero, 2010, Surface-wave analysis for building near-surface velocity models: Established approaches and new perspectives: Geophysics, 75, no. 5, 75A83–75A102, doi: 10.1190/1.3479491.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Solano, C. P., D. Donno, and H. Chauris, 2014, Alternative waveform inversion for surface wave analysis in 2-D media: Geophysical Journal International, 198, 1359–1372, doi: 10.1093/gji/ggu211.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Solano, C. P., A. Stopin, and R. Plessix, 2013, Synthetic study of elastic effects on acoustic full waveform inversion: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.20130294.CrossrefGoogle Scholar
  • Stacey, R., 1988, Improved transparent boundary formulations for the elastic-wave equation: Bulletin of the Seismological Society of America, 78, 2089–2097.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tromp, J., C. Tape, and Q. Liu, 2005, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels: Geophysical Journal International, 160, 195–216, doi: 10.1111/j.1365-246X.2004.02453.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wu, R.-S., J. Luo, and B. Wu, 2014, Seismic envelope inversion and modulation signal model: Geophysics, 79, no. 3, WA13–WA24, doi: 10.1190/geo2013-0294.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Yuan, Y. O., and F. J. Simons, 2014, Multiscale adjoint waveform-difference tomography using wavelets: Geophysics, 79, no. 3, WA79–WA95, doi: 10.1190/geo2013-0383.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Yuan, Y. O., F. J. Simons, and E. Bozdağ, 2015, Multiscale adjoint waveform tomography for surface and body waves: Geophysics, 80, no. 5, R281–R302, doi: 10.1190/geo2014-0461.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar