This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Inversion gradients for acoustic VTI wavefield tomography

Authors:

Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.

REFERENCES

  • Al-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysics, 54, 718–729, doi: 10.1190/1.1442699.GPYSA70016-8033
  • Alkhalifah, T., 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63, 623–631, doi: 10.1190/1.1444361.GPYSA70016-8033
  • Alkhalifah, T., 2000, An acoustic wave equation for anisotropic media: Geophysics, 65, 1239–1250, doi: 10.1190/1.1444815.GPYSA70016-8033
  • Alkhalifah, T., 2015, Efficient scattering angle filtering for full waveform inversion: 85th Annual International Meeting, SEG, Expanded Abstracts, 1138–1142.
  • Alkhalifah, T., S. Fomel, and B. Biondi, 2001, The space-time domain: Theory and modeling for anisotropic media: Geophysical Journal International, 144, 105–113, doi: 10.1046/j.1365-246x.2001.00300.x.GJINEA0956-540X
  • Alkhalifah, T., and R.-E. Plessix, 2014, A recipe for practical full-waveform inversion in anisotropic media: An analytical parameter resolution study: Geophysics, 79, no. 3, R91–R101, doi: 10.1190/geo2013-0366.1.GPYSA70016-8033
  • Alkhalifah, T., and I. Tsvankin, 1995, Velocity analysis for transversely isotropic media: Geophysics, 60, 1550–1566, doi: 10.1190/1.1443888.GPYSA70016-8033
  • Biondi, B., 2007, Angle-domain common-image gathers from anisotropic migration: Geophysics, 72, no. 2, S81–S91, doi: 10.1190/1.2430561.GPYSA70016-8033
  • Chavent, G., and C. A. Jacewitz, 1995, Determination of background velocities by multiple migration fitting: Geophysics, 60, 476–490, doi: 10.1190/1.1443785.GPYSA70016-8033
  • Choi, Y., and T. Alkhalifah, 2015, Unwrapped phase inversion with an exponential damping: Geophysics, 80, no. 5, R251–R264, doi: 10.1190/geo2014-0498.1.GPYSA70016-8033
  • Crawley, S., S. Brandsberg-Dahl, and J. McClean, 2010, 3D TTI RTM using the pseudoanalytic method: 80th Annual International Meeting, SEG, Expanded Abstracts, 3216–3220.
  • Díaz, E., and P. Sava, 2015, Data domain wavefield tomography using local correlation functions: 85th Annual International Meeting, SEG, Expanded Abstracts, 1361–1365.
  • Du, X., P. J. Fowler, and R. P. Fletcher, 2014, Recursive integral time-extrapolation methods for waves: A comparative review: Geophysics, 79, no. 1, T9–T26, doi: 10.1190/geo2013-0115.1.GPYSA70016-8033
  • Duveneck, E., P. Milcik, P. M. Bakker, and C. Perkins, 2008, Acoustic VTI wave equations and their application for anisotropic reverse-time migration: 78th Annual International Meeting, SEG, Expanded Abstracts, 2186–2190.
  • Etgen, J. T., and S. Brandsberg-Dahl, 2009, The pseudoanalytical method: Application of pseudolaplacians to acoustic and acoustic anisotropic wave propagation: 79th Annual International Meeting, SEG, Expanded Abstracts, 2552–2556.
  • Fletcher, R. P., X. Du, and P. J. Fowler, 2009, Reverse time migration in tilted transversely isotropic (TTI) media: Geophysics, 74, no. 6, WCA179–WCA187, doi: 10.1190/1.3269902.GPYSA70016-8033
  • Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013a, Madagascar: Open-source software project for multidimensional data analysis and reproducible computational experiments: Journal of Open Research Software, 1, e8, doi: 10.5334/jors.ag.
  • Fomel, S., L. Ying, and X. Song, 2013b, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting, 61, 526–536, doi: 10.1111/gpr.2013.61.issue-3.GPPRAR0016-8025
  • Fowler, P. J., X. Du, and R. P. Fletcher, 2010, Coupled equations for reverse time migration in transversely isotropic media: Geophysics, 75, no. 1, S11–S22, doi: 10.1190/1.3294572.GPYSA70016-8033
  • Fowler, P. J., and R. King, 2011, Modeling and reverse time migration of orthorhombic pseudoacoustic P-waves: 81st Annual International Meeting, SEG, Expanded Abstracts, 190–195.
  • Gholami, Y., R. Brossier, S. Operto, A. Ribodetti, and J. Virieux, 2013, Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade-off analysis: Geophysics, 78, no. 2, R81–R105, doi: 10.1190/geo2012-0204.1.GPYSA70016-8033
  • Grechka, V., L. Zhang, I. James, and W. Rector, 2004, Shear waves in acoustic anisotropic media: Geophysics, 69, 576–582, doi: 10.1190/1.1707077.GPYSA70016-8033
  • Hou, J., and W. W. Symes, 2015, An approximate inverse to the extended Born modeling operator: Geophysics, 80, no. 6, R331–R349, doi: 10.1190/geo2014-0592.1.GPYSA70016-8033
  • Kamath, N., and I. Tsvankin, 2016, Elastic full-waveform inversion for VTI media: Methodology and sensitivity analysis: Geophysics, 81, no. 2, C53–C68, doi: 10.1190/geo2014-0586.1.GPYSA70016-8033
  • Lameloise, C.-A., H. Chauris, and M. Noble, 2015, Improving the gradient of the image-domain objective function using quantitative migration for a more robust migration velocity analysis: Geophysical Prospecting, 63, 391–404, doi: 10.1111/gpr.2015.63.issue-2.GPPRAR0016-8025
  • Le, H., and S. A. Levin, 2014, Removing shear artifacts in acoustic wave propagation in orthorhombic media: 84th Annual International Meeting, SEG, Expanded Abstracts, 486–490.
  • Li, V., I. Tsvankin, and T. Alkhalifah, 2016, Analysis of RTM extended images for VTI media: Geophysics, 81, no. 3, S139–S150, doi: 10.1190/geo2015-0384.1.GPYSA70016-8033
  • Li, Y., B. Biondi, R. Clapp, and D. Nichols, 2016a, Integrated VTI model building with seismic data, geologic information, and rock-physics modeling. Part 1: Theory and synthetic test: Geophysics, 81, no. 5, C177–C191, doi: 10.1190/geo2015-0592.1.GPYSA70016-8033
  • Li, Y., B. Biondi, R. Clapp, and D. Nichols, 2016b, Integrated VTI model building with seismic data, geologic information, and rock-physics modeling. Part 2: Field data test: Geophysics, 81, no. 5, C205–C218, doi: 10.1190/geo2015-0593.1.GPYSA70016-8033
  • Luo, Y., and G. T. Schuster, 1991, Wave equation traveltime inversion: Geophysics, 56, 645–653, doi: 10.1190/1.1443081.GPYSA70016-8033
  • Nocedal, J., and S. J. Wright, 2006, Numerical optimization (2nd ed.): Springer-Verlag Inc.
  • Perrone, F., and P. Sava, 2012, Wavefield tomography based on local image correlations: CWP Project Review Report, 51–76.
  • Pestana, R. C., and P. L. Stoffa, 2010, Time evolution of the wave equation using rapid expansion method: Geophysics, 75, no. 4, T121–T131, doi: 10.1190/1.3449091.GPYSA70016-8033
  • Pestana, R. C., B. Ursin, and P. L. Stoffa, 2011, Separate P- and SV-wave equations for VTI media: 81st Annual International Meeting, SEG, Expanded Abstracts, 163–167.
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/gji.2006.167.issue-2.GJINEA0956-540X
  • Plessix, R.-E., A. Stopin, P. Milcik, and K. Matson, 2014, Acoustic and anisotropic multi-parameter seismic full waveform inversion case studies: 84th Annual International Meeting, SEG, Expanded Abstracts, 1056–1060.
  • Rickett, J., and P. Sava, 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics, 67, 883–889, doi: 10.1190/1.1484531.GPYSA70016-8033
  • Sattlegger, J. W., 1975, Migration velocity determination. Part I: Philosophy: Geophysics, 40, 1–5, doi: 10.1190/1.1440512.GPYSA70016-8033
  • Sava, P., 2014, A comparative review of wavefield tomography methods: CWP Project Review Report, 119–144.
  • Sava, P., and T. Alkhalifah, 2012, Anisotropy signature in extended images from reverse-time migration: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1–6.
  • Sava, P., and T. Alkhalifah, 2013, Wide-azimuth angle gathers for anisotropic wave-equation migration: Geophysical Prospecting, 61, 75–91, doi: 10.1111/gpr.2013.61.issue-1.GPPRAR0016-8025
  • Sava, P., and S. Fomel, 2006, Time-shift imaging condition in seismic migration: Geophysics, 71, no. 6, S209–S217, doi: 10.1190/1.2338824.GPYSA70016-8033
  • Sava, P., and I. Vasconcelos, 2009, Efficient computation of extended images by wavefield-based migration: 79th Annual International Meeting, SEG, Expanded Abstracts, 2824–2828.
  • Sava, P., and I. Vasconcelos, 2011, Extended imaging conditions for wave-equation migration: Geophysical Prospecting, 59, 35–55, doi: 10.1111/gpr.2010.59.issue-1.GPPRAR0016-8025
  • Sava, P. C., and S. Fomel, 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68, 1065–1074, doi: 10.1190/1.1581078.GPYSA70016-8033
  • Schleicher, J., and J. C. Costa, 2015, A separable strong-anisotropy approximation for pure qP wave propagation in TI media: 85th Annual International Meeting, SEG, Expanded Abstracts, 3565–3570.
  • Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, no. 5, VE49–VE59, doi: 10.1190/1.2972021.GPYSA70016-8033
  • Song, X., and T. Alkhalifah, 2013, Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation: Geophysics, 78, no. 4, C33–C40, doi: 10.1190/geo2012-0144.1.GPYSA70016-8033
  • Soubaras, R., and B. Gratacos, 2007, Velocity model building by semblance maximization of modulated-shot gathers: Geophysics, 72, no. 5, U67–U73, doi: 10.1190/1.2743612.GPYSA70016-8033
  • Suh, S. Y., 2014, A finite-difference method for orthorhombic reverse time migration: 84th Annual International Meeting, SEG, Expanded Abstracts, 3915–3919.
  • Sun, J., S. Fomel, and L. Ying, 2016, Low-rank one-step wave extrapolation for reverse time migration: Geophysics, 81, no. 1, S39–S54, doi: 10.1190/geo2015-0183.1.GPYSA70016-8033
  • Symes, W. W., and J. J. Carazzone, 1991, Velocity inversion by differential semblance optimization: Geophysics, 56, 654–663, doi: 10.1190/1.1443082.GPYSA70016-8033
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033
  • Tromp, J., C. Tape, and Q. Liu, 2005, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels: Geophysical Journal International, 160, 195–216, doi: 10.1111/gji.2005.160.issue-1.GJINEA0956-540X
  • Tsvankin, I., 2012, Seismic signatures and analysis of reflection data in anisotropic media (3rd ed.): SEG.
  • Tsvankin, I., and V. Grechka, 2011, Seismology of azimuthally anisotropic media and seismic fracture characterization: SEG.
  • Tsvankin, I., and L. Thomsen, 1994, Nonhyperbolic reflection moveout in anisotropic media: Geophysics, 59, 1290–1304, doi: 10.1190/1.1443686.GPYSA70016-8033
  • Wang, H., and P. Sava, 2015, Pseudo-acoustic wavefield tomography with model constraints: CWP Project Review Report, 95–106.
  • Wang, X., and I. Tsvankin, 2013a, Multiparameter TTI tomography of P-wave reflection and VSP data: Geophysics, 78, no. 5, WC51–WC63, doi: 10.1190/geo2012-0394.1.GPYSA70016-8033
  • Wang, X., and I. Tsvankin, 2013b, Ray-based gridded tomography for tilted transversely isotropic media: Geophysics, 78, no. 1, C11–C23, doi: 10.1190/geo2012-0066.1.GPYSA70016-8033
  • Warner, M., A. Ratcliffe, T. Nangoo, J. Morgan, A. Umpleby, N. Shah, V. Vinje, I. Tekl, L. Guasch, C. Win, G. Conroy, and A. Bertrand, 2013, Anisotropic 3D full-waveform inversion: Geophysics, 78, no. 2, R59–R80, doi: 10.1190/geo2012-0338.1.GPYSA70016-8033
  • Weibull, W. W., and B. Arntsen, 2014, Anisotropic migration velocity analysis using reverse-time migration: Geophysics, 79, no. 1, R13–R25, doi: 10.1190/geo2013-0108.1.GPYSA70016-8033
  • Yang, T., and P. Sava, 2015, Image-domain wavefield tomography with extended common-image-point gathers: Geophysical Prospecting, 63, 1086–1096, doi: 10.1111/gpr.2015.63.issue-5.GPPRAR0016-8025
  • Zhan, G., R. C. Pestana, and P. L. Stoffa, 2012, Decoupled equations for reverse time migration in tilted transversely isotropic media: Geophysics, 77, no. 2, T37–T45, doi: 10.1190/geo2011-0175.1.GPYSA70016-8033
  • Zhang, Y., and G. Shan, 2013, Wave-equation migration velocity analysis using partial stack-power maximization: 83rd Annual International Meeting, SEG, Expanded Abstracts, 4847–4852.
  • Zhang, Y., H. Zhang, and G. Zhang, 2011, A stable TTI reverse time migration and its implementation: Geophysics, 76, no. 3, WA3–WA11, doi: 10.1190/1.3554411.GPYSA70016-8033