This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Perturbational and nonperturbational inversion of Rayleigh-wave velocities

Authors:

The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

REFERENCES

  • Aki, K., and P. G. Richards, 1980, Quantitative seismology: W. H. Freeman and Company.Google Scholar
  • Aster, R., B. Borchers, and C. Thurber, 2004, Parameter estimation and inverse problems: Elsevier Academic Press.Google Scholar
  • Brenguier, F., N. M. Shapiro, M. Campillo, A. Nercessian, and V. Ferrazzini, 2007, 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations: Geophysical Research Letters, 34, L02305, doi: 10.1029/2006GL028586.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Cercato, M., 2007, Computation of partial derivatives of Rayleigh-wave phase velocity using second-order subdeterminants: Geophysical Journal International, 170, 217–238, doi: 10.1111/j.1365-246X.2007.03383.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Cercato, M., 2008, Addressing non-uniqueness in linearized multichannel surface wave inversion: Geophysical Prospecting, 57, 27–47, doi: 10.1111/j.1365-2478.2007.00719.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Chouet, B., G. De Luca, G. Milana, P. Dawson, M. Martini, and R. Scarpa, 1998, Shallow velocity structure of stromboli volcano, Italy, derived from small-aperture array measurements of strombolian tremor: Bulletin of the Seismological Society of America, 88, 653–666.BSSAAP0037-1106Web of ScienceGoogle Scholar
  • Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68–86, doi: 10.1190/1.1438126.GPYSA70016-8033AbstractGoogle Scholar
  • Dorman, J., and M. Ewing, 1962, Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the New York-Pennsylvannia area: Journal of Geophysical Research, 67, 5227–5241, doi: 10.1029/JZ067i013p05227.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Garofalo, F., S. Foti, F. Hollender, P. Y. Bard, C. Cornou, B. R. Cox, M. Ohrnberger, D. Sicilia, M. Asten, G. Di Giulio, T. Forbriger, B. Guillier, K. Hayashi, A. Martin, S. Matsushima, D. Mercerat, V. Poggi, and H. Yamanaka, 2016, InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods: Soil Dynamics and Earthquake Engineering, 82, 222–240, doi: 10.1016/j.soildyn.2015.12.010.CrossrefWeb of ScienceGoogle Scholar
  • Gerstoft, P., K. G. Sabra, P. Roux, W. A. Kuperman, and M. C. Fehler, 2006, Green’s functions extraction and surface-wave tomography from microseisms in southern California: Geophysics, 71, no. 4, SI23–SI31, doi: 10.1190/1.2210607.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gouveia, W. P., and J. A. Scales, 1998, Bayesian seismic waveform inversion parameter estimation and uncertainty analysis: Journal of Geophysical Research, 103, 2759–2779, doi: 10.1029/97JB02933.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Haney, M. M., 2009, Infrasonic ambient noise interferometry from correlations of microbaroms: Geophysical Research Letters, 36, L19808, doi: 10.1029/2009GL040179.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Haney, M. M., K. T. Decker, and J. H. Bradford, 2010, Permittivity structure derived from group velocities of guided GPR pulses, in R. D. MillerJ. H. BradfordK. Holliger, eds., Advances in near surface seismology and ground penetrating radar: SEG, 167–184.AbstractGoogle Scholar
  • Haney, M. M., and V. C. Tsai, 2015, Nonperturbational surface-wave inversion: A Dix-type relation for surface waves: Geophysics, 80, no. 6, EN167–EN177, doi: 10.1190/geo2014-0612.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Karpfinger, F., H.-P. Valero, B. Gurevich, A. Bakulin, and B. Sinha, 2010, Spectral-method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures: Geophysics, 75, no. 3, H19–H27, doi: 10.1190/1.3380590.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kausel, E., 2005, Wave propagation modes from simple systems to layered soils, in C. G. LaiK. Wilmanski, eds., Surface waves in geomechanics: Direct and inverse modeling for soil and rocks: Springer-Verlag, 165–202.CrossrefGoogle Scholar
  • Komatitsch, D., C. Barnes, and J. Tromp, 2000, Wave propagation near a fluid-solid interface: A spectral-element approach: Geophysics, 65, 623–631, doi: 10.1190/1.1444758.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lehoucq, R. B., D. C. Sorensen, and C. Yang, 1998, ARPACK users’ guide: Solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods: SIAM.CrossrefGoogle Scholar
  • Luo, Y., J. Xia, J. Liu, Q. Liu, and S. Xu, 2007, Joint inversion of high-frequency surface waves with fundamental and higher modes: Journal of Applied Geophysics, 62, 375–384, doi: 10.1016/j.jappgeo.2007.02.004.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Lysmer, J., 1970, Lumped mass method for Rayleigh waves: Bulletin of the Seismological Society of America, 60, 89–104.BSSAAP0037-1106Web of ScienceGoogle Scholar
  • Ma, Y., and R. Clayton, 2016, Structure of the Los Angeles Basin from ambient noise and receiver functions: Geophysical Journal International, 206, 1645–1651, doi: 10.1093/gji/ggw236.CrossrefWeb of ScienceGoogle Scholar
  • Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49, 533–549, doi: 10.1190/1.1441689.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Muyzert, E., 2007, Seabed property estimation from ambient-noise recordings. Part 2: Scholte-wave spectral-ratio inversion: Geophysics, 72, no. 4, U47–U53, doi: 10.1190/1.2719062.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nolet, G., R. Sleeman, V. Nijhof, and B. L. N. Kennett, 1989, Synthetic reflection seismograms in three dimensions by a locked-mode approximation: Geophysics, 54, 350–358, doi: 10.1190/1.1442660.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Paige, C. C., and M. A. Saunders, 1982, LSQR: An Algorithm for Sparse Linear Equations And Sparse Least Squares: Association for Computing Machinery Transactions on Mathematical Software, 8, 43–71, doi: 10.1145/355984.355989.GPYSA70016-8033CrossrefWeb of ScienceGoogle Scholar
  • Rodi, W. L., P. Glover, T. M. C. Li, and S. S. Alexander, 1975, A fast, accurate method for computing group-velocity partial derivatives for Rayleigh and Love modes: Bulletin of the Seismological Society of America, 65, 1105–1114.BSSAAP0037-1106Web of ScienceGoogle Scholar
  • Saccorotti, G., B. Chouet, and P. Dawson, 2003, Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analysis of tremor wavefields: Geophysical Journal International, 152, 633–648, doi: 10.1046/j.1365-246X.2003.01867.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Saito, M., 1988, Disper80, in D. J. Doornbos, ed., Seismological algorithms: Computational methods and computer programs: Academic Press, 293–319.Google Scholar
  • Snieder, R., and J. Trampert, 1999, Inverse problems in geophysics, in A. Wirgin, ed., Wavefield inversion: Springer Verlag, 119–190.CrossrefGoogle Scholar
  • Strick, E., and A. S. Ginzbarg, 1956, Stoneley-wave velocities for a fluid-solid interface: Bulletin of the Seismological Society of America, 46, 281–292.BSSAAP0037-1106Google Scholar
  • Takeuchi, H. M., and M. Saito, 1972, Seismic surface waves, in B. A. Bolt, ed., Methods in computational physics: Academic Press, 217–295.CrossrefGoogle Scholar
  • Tarantola, A., and B. Valette, 1982, Generalized nonlinear inverse problems solved using the least squares criterion: Reviews of Geophysics and Space Physics, 20, 219–232, doi: 10.1029/RG020i002p00219.RGPSBL0034-6853CrossrefWeb of ScienceGoogle Scholar
  • Tsai, V. C., and S. Atiganyanun, 2014, Green’s functions for surface waves in a generic velocity structure: Bulletin of the Seismological Society of America, 104, 2573–2578, doi: 10.1785/0120140121.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Tsai, V. C., B. Minchew, M. P. Lamb, and J.-P. Ampuero, 2012, A physical model for seismic noise generation from sediment transport in rivers: Geophysical Research Letters, 39, L02404, doi: 10.1029/2011GL050255.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Wiggins, R. A., 1976, A fast, new computational algorithm for free oscillations and surface waves: Geophysical Journal of the Royal Astronomical Society, 47, 135–150, doi: 10.1111/j.1365-246X.1976.tb01266.x.GEOJAN0016-8009CrossrefWeb of ScienceGoogle Scholar
  • Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar