This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Elastic least-squares reverse time migration

Authors:

We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTM solves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional least-squares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTM will produce migration noise stronger than that seen in the RTM images.

REFERENCES

  • Anikiev, D., B. Kashtan, and W. A. Mulder, 2013, Decoupling of elastic parameters with iterative linearized inversion: 73rd Annual International Meeting, SEG, Expanded Abstracts, 3185–3190.AbstractGoogle Scholar
  • Brenders, A. J., and R. G. Pratt, 2007, Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model: Geophysical Journal International, 168, 133–151.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Byun, J., J. W. Rector III, and T. Nemeth, 2002, Postmap migration of crosswell reflection seismic data: Geophysics, 67, 135–146, doi: 10.1190/1.1451423.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Chang, W., and G. A. McMechan, 1987, Elastic reverse time migration: Geophysics, 52, 1365–1375, doi: 10.1190/1.1442249.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Chavent, G., and R.‐E. Plessix, 1999, An optimal true‐amplitude least‐squares prestack depth‐migration operator: Geophysics, 64, 508–515, doi: 10.1190/1.1444557.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Crase, E., A. Pica, M. Noble, J. McDonald, and A. Tarantola, 1990, Robust elastic nonlinear waveform inversion: Application to real data: Geophysics, 55, 527–538, doi: 10.1190/1.1442864.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dai, W., P. Fowler, and G. T. Schuster, 2012, Multi-source least-squares reverse time migration: Geophysical Prospecting, 60, 681–695, doi: 10.1111/j.1365-2478.2012.01092.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Dai, W., and J. Schuster, 2009, Least‐squares migration of simultaneous sources data with a deblurring filter: 79th Annual International Meeting, SEG, Expanded Abstracts, 2990–2994, doi: 10.1190/1.3255474.AbstractGoogle Scholar
  • Dai, W., and G. T. Schuster, 2013, Plane-wave least-squares reverse-time migration: Geophysics, 78, no. 4, S165–S177, doi: 10.1190/geo2012-0377.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dai, W., X. Wang, and G. T. Schuster, 2011, Least-squares migration of multisource data with a deblurring filter: Geophysics, 76, no. 5, R135–R146, doi: 10.1190/geo2010-0159.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dai, W., Z. Xu, and R. Coates, 2015, Least-squares reverse-time migration for visco-acoustic media: 85th Annual International Meeting, SEG, Expanded Abstracts, 3387–3391.AbstractGoogle Scholar
  • Du, Q., Y. Zhu, and J. Ba, 2012, Polarity reversal correction for elastic reverse time migration: Geophysics, 77, no. 2, S31–S41, doi: 10.1190/geo2011-0348.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Duan, Y., and P. Sava, 2015, Scalar imaging condition for elastic reverse time migration: Geophysics, 80, no. 4, S127–S136, doi: 10.1190/geo2014-0453.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Duquet, B., K. J. Marfurt, and J. A. Dellinger, 2000, Kirchhoff modeling, inversion for reflectivity, and subsurface illumination: Geophysics, 65, 1195–1209, doi: 10.1190/1.1444812.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dutta, G., Y. Huang, W. Dai, X. Wang, and G. T. Schuster, 2014a, Making the most out of the least (squares migration): 84th Annual International Meeting, SEG, Expanded Abstracts, 4405–4410.AbstractGoogle Scholar
  • Dutta, G., and G. T. Schuster, 2014, Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation: Geophysics, 79, no. 6, S251–S262, doi: 10.1190/geo2013-0414.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dutta, G., M. Sinha, and G. T. Schuster, 2014b, A cross-correlation objective function for least-squares migration and visco-acoustic imaging: 84th Annual International Meeting, SEG, Expanded Abstracts, 3985–3990.AbstractGoogle Scholar
  • Etgen, J. T., 1988, Prestacked migration of P and SV-waves: 66th Annual International Meeting, SEG, Expanded Abstracts, 972–975.AbstractGoogle Scholar
  • Granli, J. R., B. Arntsen, A. Sollid, and E. Hilde, 1999, Imaging through gas-filled sediments using marine shear-wave data: Geophysics, 64, 668–677, doi: 10.1190/1.1444576.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Guasch, L., M. Warner, T. Nangoo, J. Morgan, A. Umpleby, I. Stekl, and N. Shah, 2012, Elastic 3D full-waveform inversion: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-1239.1.AbstractGoogle Scholar
  • Harris, J. M., R. C. NolenHoeksema, R. T. Langan, M. V. Schaack, S. K. Lazaratos, and J. W. Rector, 1995, High resolution crosswell imaging of a West Texas carbonate reservoir. Part 1: Project summary and interpretation: Geophysics, 60, 667–681, doi: 10.1190/1.1443806.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Hokstad, K., 2000, Multicomponent Kirchhoff migration: Geophysics, 65, 861–873, doi: 10.1190/1.1444783.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Hou, J., and W. W. Symes, 2016, Accelerating extended least-squares migration with weighted conjugate gradient iteration: Geophysics, 81, no. 4, S165–S179, doi: 10.1190/geo2015-0499.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Huang, Y., and G. T. Schuster, 2012, Multisource least-squares migration of marine streamer data with frequency-division encoding: Geophysics, 60, 663–680.GPYSA70016-8033Google Scholar
  • Jiao, K., W. Huang, D. Vigh, J. Kapoor, R. Coates, E. W. Starr, and X. Cheng, 2012, Elastic migration for improving salt and subsalt imaging and inversion: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-0791.1.AbstractGoogle Scholar
  • Kaplan, S. T., P. S. Routh, and M. D. Sacchi, 2010, Derivation of forward and adjoint operators for least-squares shot-profile split-step migration: Geophysics, 75, no. 6, S225–S235, doi: 10.1190/1.3506146.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kuhl, H., and M. D. Sacchi, 2003, Least squares wave-equation migration for AVP/AVA inversion: Geophysics, 68, 262–273, doi: 10.1190/1.1543212.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kuo, J. T., and T. Dai, 1984, Kirchhoff elastic wave migration for the case of noncoincident source and receiver: Geophysics, 49, 1223–1238, doi: 10.1190/1.1441751.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kurkjian, A. L., H. Schmidt, T. L. Marzetta, J. E. White, and C. Chouzenoux, 1992, Numerical modeling of crosswell seismic monopole sensor data: 60th Annual International Meeting, SEG, Expanded Abstracts, 141–144.AbstractGoogle Scholar
  • Lailly, P., 1984, Migration methods: Partial but efficient solutions to the seismic inverse problem: Inverse Problems of Acoustic and Elastic Waves, 51, 13871403.Google Scholar
  • Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53, 1425–1436, doi: 10.1190/1.1442422.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, G., 1994, Crosswell seismic processing: Automatic velocity analysis, filtering, and reflection imaging: Ph.D. thesis, University of Calgary.Google Scholar
  • Lu, R., P. Traynin, and J. E. Anderson, 2009, Comparison of elastic and acoustic reverse time migration on the synthetic elastic Marmousi OBC dataset: 79th Annual International Meeting, SEG, Expanded Abstracts, 2799–2803.AbstractGoogle Scholar
  • Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mora, P., 1988, Elastic wave-field inversion of reflection and transmission data: Geophysics, 53, 750–759, doi: 10.1190/1.1442510.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nemeth, T., C. Wu, and G. T. Schuster, 1999, Least-squares migration of incomplete reflection data: Geophysics, 64, 208–221, doi: 10.1190/1.1444517.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nocedal, J., and S. J. Wright, 1999, Numerical optimization: Springer.CrossrefGoogle Scholar
  • Plessix, R.-E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, 495–503, doi: 10.1111/j.1365-246X.2006.02978.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Plessix, R.-E., and W. A. Mulder, 2004, Frequency-domain finite-difference amplitude-preserving migration: Geophysical Journal International, 157, 975–987, doi: 10.1111/j.1365-246X.2004.02282.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Prieux, V., R. Brossier, S. Operto, and J. Virieux, 2013, Multiparameter full waveform inversion of multicomponent ocean-bottom-cable data from the valhall field. Part 2: Imaging compressive-wave and shear-wave velocities: Geophysical Journal International, 194, 1665–1681, doi: 10.1093/gji/ggt178.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Raknes, E., and B. Arntsen, 2014, Strategies for elastic full waveform inversion: 84th Annual International Meeting, SEG, Expanded Abstracts, 1222–1226.AbstractGoogle Scholar
  • Ravaut, C., S. Operto, L. Improta, J. Virieux, A. Herrero, and P. Dell’Aversana, 2004, Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: Application to a thrust belt: Geophysical Journal International, 159, 1032–1056, doi: 10.1111/j.1365-246X.2004.02442.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Sears, T., S. Singh, and P. Barton, 2008, Elastic full waveform inversion of multi-component OBC seismic data: Geophysical Prospecting, 56, 843–862, doi: 10.1111/j.1365-2478.2008.00692.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sears, T. J., P. J. Barton, and S. C. Singh, 2010, Elastic full waveform inversion of multicomponent ocean-bottom cable seismic data: Application to Alba field, U.K. North Sea: Geophysics, 75, no. 6, R109–R119, doi: 10.1190/1.3484097.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Schuster, G. T., 2017, Seismic inversion: SEG.AbstractGoogle Scholar
  • Sinha, M., and G. T. Schuster, 2015, Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration: 75th Annual International Meeting, SEG, Expanded Abstracts, 4254–4258.AbstractGoogle Scholar
  • Stanton, A., and M. D. Sacchi, 2014, Least squares migration of converted wave seismic data: CSEG Recorder, 39, 48–52.Google Scholar
  • Stanton, A., and M. D. Sacchi, 2015, Least-squares wave-equation migration of elastic data: 77th Annual International Conference and Exhibition, EAGE, Extended Abstracts, Tu N116 106.CrossrefGoogle Scholar
  • Stewart, R. R., J. E. Gaiser, R. J. Brown, and D. C. Lawton, 2002, Converted wave seismic exploration: Methods: Geophysics, 67, 1348–1363, doi: 10.1190/1.1512781.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Stewart, R. R., J. E. Gaiser, R. J. Brown, and D. C. Lawton, 2003, Converted wave seismic exploration: Applications: Geophysics, 68, 40–57, doi: 10.1190/1.1543193.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sun, R., and G. A. McMechan, 2001, Scalar reverse time depth migration of prestack elastic seismic data: Geophysics, 66, 1519–1527, doi: 10.1190/1.1487098.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tang, Y., 2009, Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian: Geophysics, 74, no. 6, WCA95–WCA107, doi: 10.1190/1.3204768.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geophysics, 51, 1893–1903, doi: 10.1190/1.1442046.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Valenciano, A. A., B. Biondi, and A. Guitton, 2006, Target-oriented wave-equation inversion: Geophysics, 71, no. 4, A35–A38, doi: 10.1190/1.2213359.AbstractWeb of ScienceGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • White, J. E., and M. A. Lessenger, 1988, Caliper effect on borehole coupling: Exploration Geophysics, 19, 201–205, doi: 10.1071/EG988201.CrossrefGoogle Scholar
  • Wu, R., and K. Aki, 1985, Scattering characteristics of elastic waves by an elastic heterogeneity: Geophysics, 50, 582–595, doi: 10.1190/1.1441934.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Yan, J., and P. Sava, 2008, Isotropic angle-domain elastic reverse-time migration: Geophysics, 73, no. 6, S229–S239, doi: 10.1190/1.2981241.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zeng, C., S. Dong, and B. Wang, 2013, Least-squares reverse time migration: Inversion-based imaging toward true reflectivity: The Leading Edge, 33, 962–964, 966, 968, doi: 10.1190/tle33090962.1.AbstractGoogle Scholar
  • Zhang, Y., L. Duan, and Y. Xie, 2013, A stable and practical implementation of least-squares reverse time migration: 83rd Annual International Meeting, SEG, Expanded Abstracts, 3716–3720.AbstractGoogle Scholar
  • Zhang, Y., L. Duan, and Y. Xie, 2015, A stable and practical implementation of least-squares reverse time migration: Geophysics, 80, no. 1, V23–V31, doi: 10.1190/geo2013-0461.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhe, J., and S. A. Greenhalgh, 1997, Prestack multicomponent migration: Geophysics, 62, 598–613, doi: 10.1190/1.1444169.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhou, C., G. T. Schuster, S. Hassanzadeh, and J. M. Harris, 1997, Elastic wave equation traveltime and waveform inversion of crosswell data: Geophysics, 62, 853–868, doi: 10.1190/1.1444194.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar