ABSTRACT
Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity (), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters and . Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of is dip-dependent, whereas errors in cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of and on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.
REFERENCES
- 1989, Velocity analysis by iterative profile migration: Geophysics, 54,
718–729 , doi:10.1190/1.1442699 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1996, Transformation to zero offset in transversely isotropic media: Geophysics, 61,
947–963 , doi:10.1190/1.1444044 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1997, Kinematics of 3-D DMO operators in transversely isotropic media: Geophysics, 62,
1214–1219 , doi:10.1190/1.1444222 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1998, Acoustic approximations for processing in transversely isotropic media: Geophysics, 63,
623–631 , doi:10.1190/1.1444361 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2000, An acoustic wave equation for anisotropic media: Geophysics, 65,
1239–1250 , doi:10.1190/1.1444815 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2011, The basic components of residual migration in VTI media using anisotropy continuation: Journal of Petroleum Exploration and Production Technology, 1,
17–22 , doi:10.1007/s13202-011-0006-6 .CrossrefGoogle Scholar , - 2001, The space-time domain: Theory and modeling for anisotropic media: Geophysical Journal International, 144,
105–113 , doi:10.1046/j.1365-246x.2001.00300.x .GJINEA 0956-540X CrossrefWeb of ScienceGoogle Scholar , - 1995, Velocity analysis for transversely isotropic media: Geophysics, 60,
1550–1566 , doi:10.1190/1.1443888 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2014, Preconditioned tomographic full waveform inversion by wavelength continuation:
84th Annual International Meeting, SEG , Expanded Abstracts,944–948 .AbstractGoogle Scholar , - 1996, Fowler DMO and time migration for transversely isotropic media: Geophysics, 61,
835–845 , doi:10.1190/1.1444008 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1983, Reverse time migration: Geophysics, 48,
1514–1524 , doi:10.1190/1.1441434 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1982, Imaging of acoustic energy by wavefield extrapolation: Elsevier.Google Scholar ,
- 2007, Angle-domain common-image gathers from anisotropic migration: Geophysics, 72, no. 2,
S81–S91 , doi:10.1190/1.2430561 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1995, Determination of background velocities by multiple migration fitting: Geophysics, 60,
476–490 , doi:10.1190/1.1443785 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1985, Imaging the earth’s interior: Blackwell Scientific Publications.Google Scholar ,
- 2011, An image-guided method for automatically picking common-image-point gathers:
81st Annual International Meeting, SEG , Expanded Abstracts,3908–3912 .AbstractGoogle Scholar , - 2011, Stable P-wave modeling for reverse-time migration in tilted TI media: Geophysics, 76, no. 2,
S65–S75 , doi:10.1190/1.3533964 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2008, Acoustic VTI wave equations and their application for anisotropic reverse-time migration:
78th Annual International Meeting, SEG , Expanded Abstracts,2186–2190 .AbstractGoogle Scholar , - 2009, Reverse time migration in tilted transversely isotropic (TTI) media: Geophysics, 74, no. 6,
WCA179–WCA187 , doi:10.1190/1.3269902 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2013a, Madagascar: Open-source software project for multidimensional data analysis and reproducible computational experiments: Journal of Open Research Software, 1,
e8 , doi:10.5334/jors.ag .CrossrefGoogle Scholar , - 2013b, Seismic wave extrapolation using lowrank symbol approximation: Geophysical Prospecting, 61,
526–536 , doi:10.1111/j.1365-2478.2012.01064.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2010, Coupled equations for reverse time migration in transversely isotropic media: Geophysics, 75, no. 1,
S11–S22 , doi:10.1190/1.3294572 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2004, Shear waves in acoustic anisotropic media: Geophysics, 69,
576–582 , doi:10.1190/1.1707077 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2015, An approximate inverse to the extended Born modeling operator: Geophysics, 80, no. 6,
R331–R349 , doi:10.1190/geo2014-0592.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2015, Improving the gradient of the image-domain objective function using quantitative migration for a more robust migration velocity analysis: Geophysical Prospecting, 63,
391–404 , doi:10.1111/1365-2478.12195 .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2001, Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible?: Geophysics, 66,
897–903 , doi:10.1190/1.1444979 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2014, Wave-equation migration velocity analysis for VTI models: Geophysics, 79, no. 3,
WA59–WA68 , doi:10.1190/geo2013-0338.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1983, Migration by extrapolation of time-dependent boundary values: Geophysical Prospecting, 31,
413–420 , doi:10.1111/j.1365-2478.1983.tb01060.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2002, Offset and angle–domain common image-point gathers for shot-profile migration: Geophysics, 67,
883–889 , doi:10.1190/1.1484531 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1975, Migration velocity determination. Part I: Philosophy: Geophysics, 40,
1–5 , doi:10.1190/1.1440512 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2011, Wide-azimuth angle-domain imaging for anisotropic reverse-time migration:
81st Annual International Meeting, SEG , Expanded Abstracts,3114–3119 .AbstractGoogle Scholar , - 2012, Anisotropy signature in extended images from reverse-time migration:
82nd Annual International Meeting, SEG, Expanded Abstracts , doi:10.1190/segam2012-0124.1 .AbstractGoogle Scholar , - 2006, Time-shift imaging condition in seismic migration: Geophysics, 71, no. 6,
S209–S217 , doi:10.1190/1.2338824 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2009, Overview and classification of wavefield seismic imaging methods: The Leading Edge, 28,
170–183 , doi:10.1190/1.3086052 .AbstractGoogle Scholar , - 2009, Efficient computation of extended images by wavefield-based migration:
79th Annual International Meeting, SEG , Expanded Abstracts,2824–2828 .AbstractGoogle Scholar , - 2011, Extended imaging conditions for wave-equation migration: Geophysical Prospecting, 59,
35–55 , doi:10.1111/j.1365-2478.2010.00888.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2011, Wide-azimuth angle gathers for wave-equation migration: Geophysics, 76, no. 3,
S131–S141 , doi:10.1190/1.3560519 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68,
1065–1074 , doi:10.1190/1.1581078 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, no. 5,
VE49–VE59 , doi:10.1190/1.2972021 .AbstractWeb of ScienceGoogle Scholar , - 2003, Differential semblance velocity analysis by wave-equation migration:
73rd Annual International Meeting, SEG , Expanded Abstracts,2132–2135 .AbstractGoogle Scholar , - 2007, Velocity model building by semblance maximization of modulated-shot gathers: Geophysics, 72, no. 5,
U67–U73 , doi:10.1190/1.2743612 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 1991, Velocity inversion by differential semblance optimization: Geophysics, 56,
654–663 , doi:10.1190/1.1443082 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2012, Seismic signatures and analysis of reflection data in anisotropic media: SEG.AbstractGoogle Scholar ,
- 2011, Seismology of azimuthally anisotropic media and seismic fracture characterization: SEG.AbstractGoogle Scholar ,
- 2013, Automatic velocity analysis with reverse-time migration: Geophysics, 78, no. 4,
S179–S192 , doi:10.1190/geo2012-0064.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2014, Anisotropic migration velocity analysis using reverse-time migration: Geophysics, 79, no. 1,
R13–R25 , doi:10.1190/geo2013-0108.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2011, Wave-equation migration velocity analysis with time-shift imaging: Geophysical Prospecting, 59,
635–650 , doi:10.1111/j.1365-2478.2011.00954.x .GPPRAR 0016-8025 CrossrefWeb of ScienceGoogle Scholar , - 2015, Image-domain wavefield tomography with extended common-image-point gathers: Geophysical Prospecting, 63,
1086–1096 , doi:10.1111/1365-2478.12204 .1365-2478 CrossrefWeb of ScienceGoogle Scholar , - 2013, Illumination compensation for image-domain wavefield tomography: Geophysics, 78, no. 5,
U65–U76 , doi:10.1190/geo2012-0278.1 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar , - 2011, A stable TTI reverse time migration and its implementation: Geophysics, 76, no. 3,
WA3–WA11 , doi:10.1190/1.3554714 .GPYSA7 0016-8033 AbstractWeb of ScienceGoogle Scholar ,