ABSTRACT
The offset-midpoint traveltime pyramid describes the diffraction traveltime of a point diffractor in homogeneous media. We have developed an analytic approximation for the P-wave offset-midpoint traveltime pyramid for homogeneous orthorhombic media. In this approximation, a perturbation method and the Shanks transform were implemented to derive the analytic expressions for the horizontal slowness components of P-waves in orthorhombic media. Numerical examples were shown to analyze the proposed traveltime pyramid formula and determined its accuracy and the application in calculating migration isochrones and reflection traveltime. The proposed offset-midpoint traveltime formula is useful for Kirchhoff prestack time migration and migration velocity analysis for orthorhombic media.
REFERENCES
- 1998, Acoustic approximations for seismic processing in transversely isotropic media: Geophysics, 63,
623–631 , doi:10.1190/1.1444361 .GPYSA7 0016-8033 , - 2000a, Prestack phase-shift migration of separate offsets: Geophysics, 65,
1179–1194 , doi:10.1190/1.1444811 .GPYSA7 0016-8033 , - 2000b, The offset-midpoint traveltime pyramid in transversely isotropic media: Geophysics, 65,
1316–1325 , doi:10.1190/1.1444823 .GPYSA7 0016-8033 , - 2003, An acoustic wave equation for orthorhombic anisotropy: Geophysics, 68,
1169–1172 , doi:10.1190/1.1598109 .GPYSA7 0016-8033 , - 2000, Estimation of fracture parameters from reflection seismic data — Part II: Fractured models with orthorhombic symmetry: Geophysics, 65,
1803–1817 , doi:10.1190/1.1444864 .GPYSA7 0016-8033 , - 1978, Advanced mathematical methods for scientists and engineers: McGraw-Hill. ,
- 1986, Asymptotic expansions of integrals: Dover Publications Inc. ,
- 2011, 3D Kirchhoff prestack time migration in average illumination-azimuth and incident-angle domain for isotropic and vertical transversely isotropic media: Geophysics, 76, no. 1,
S15–S27 , doi:10.1190/1.3533913 .GPYSA7 0016-8033 , - 2012, Azimuth-preserved local angle-domain prestack time migration in isotropic, vertical transversely isotropic and azimuthally anisotropic media: Geophysics, 77, no. 2,
S51–S64 , doi:10.1190/geo2011-0295.1 .GPYSA7 0016-8033 , - 1985, Imaging the earth’s interior: Blackwell Science Inc. ,
- 2013a, Moveout approximations for P- and SV-waves in VTI media: Geophysics, 78, no. 5,
WC81–WC92 , doi:10.1190/geo2012-0408.1 .GPYSA7 0016-8033 , - 2013b, Moveout approximations for P- and SV-waves in dip-constrained transversely isotropic media: Geophysics, 78, no. 6,
C53–C59 , doi:10.1190/geo2013-0083.1 .GPYSA7 0016-8033 , - 1999, 3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study: Geophysics, 64,
1202–1218 , doi:10.1190/1.1444627 .GPYSA7 0016-8033 , - 2014, P-wave diffraction and reflection traveltimes for a homogeneous 3D TTI medium: Journal of Seismic Exploration, 23,
405–429 . , - 2015, The offset-midpoint traveltime pyramid in 2D transversely isotropic media with a tilted symmetry axis: Geophysical Prospecting, 63,
587–596 , doi:10.1111/1365-2478.12201 .GPPRAR 0016-8025 , - 2016a, Analytic calculation of phase and group velocities of P-waves in orthorhombic media: Geophysics, 81, no. 3,
C79–C97 , doi:10.1190/geo2015-0156.1 .GPYSA7 0016-8033 , - 2016b, P-wave slowness surface approximation for tilted orthorhombic media: Geophysics, 81, no. 3,
C99–C112 , doi:10.1190/geo2015-0440.1 .GPYSA7 0016-8033 , - 2015, The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis: Geophysics, 80, no. 1,
T51–T62 , doi:10.1190/geo2013-0322.1 .GPYSA7 0016-8033 , - 1997, Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth: Geophysics, 62,
1954–1974 , doi:10.1190/1.1444297 .GPYSA7 0016-8033 , - 2015, Azimuthally dependent kinematic properties of orthorhombic media: Geophysics, 80, no. 6,
C107–C122 , doi:10.1190/geo2015-0288.1 .GPYSA7 0016-8033 , - 2012, A new traveltime approximation for TI media: Geophysics, 77, no. 4,
C37–C42 , doi:10.1190/geo2011-0158.1 .GPYSA7 0016-8033 , - 2013, A tilted transversely isotropic slowness surface approximation: Geophysical Prospecting, 61,
568–573 , doi:10.1111/gpr.2013.61.issue-3 .GPPRAR 0016-8025 , - 2015, Full-azimuth anisotropic prestack time migration in the local-angle domain and its applications on fracture detection: Geophysics, 80, no. 2,
C37–C47 , doi:10.1190/geo2014-0162.1 .GPYSA7 0016-8033 , - 1986, Weak elastic anisotropy: Geophysics, 51,
1954–1966 , doi:10.1190/1.1442051 .GPYSA7 0016-8033 , - 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: Geophysics, 62,
1292–1309 , doi:10.1190/1.1444231 .GPYSA7 0016-8033 , - 2001, Seismic signatures and analysis of reflection data in anisotropic medium (1st ed.): Elsevier Science Publishing Company Inc. ,
- 2006, Non-hyperbolic moveout inversion of wide-azimuth P-wave data for orthorhombic media: Geophysical Prospecting, 54,
535–552 , doi:10.1111/j.1365-2478.2006.00559.x .GPPRAR 0016-8025 , - 2005, Geometrical spreading of P-waves in horizontally layered, azimuthally anisotropic media: Geophysics, 70, no. 5,
D43–D53 , doi:10.1190/1.2052467 .GPYSA7 0016-8033 , - 2008, AVO-sensitive semblance analysis for wide-azimuth data: Geophysics, 73, no. 2,
U1–U11 , doi:10.1190/1.2834115 .GPYSA7 0016-8033 , - 2001, Seismic data analysis, processing, inversion and interpretation of seismic data I: SEG. ,
- 1980, Prestack partial migration: Geophysics, 45,
1753–1779 , doi:10.1190/1.1441064 .GPYSA7 0016-8033 ,