This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Electromagnetic induction (EMI) techniques are becoming increasingly popular for near-surface coastal geophysical applications. However, few studies have explored the capabilities and limitations of portable multifrequency EMI profilers for mapping large-scale (101102  km) barrier island hydrogeology. The purpose of this study is to investigate the influence of groundwater dynamics on apparent conductivity σa to separate the effects of hydrology and geology from the σa signal. Shore-normal and alongshore surveys were performed within a highly conductive barrier island/wind-tidal flat system at Padre Island National Seashore, Texas, USA. Assessments of instrument calibration and signal drift suggest that σa measurements are stable, but vary with height and location across the beach. Repeatability tests confirm σa values using different boom orientations collected during the same day are reproducible. Measurements over a 12 h tidal cycle suggest that there is a tide-dependent step response in σa, complicating data processing and interpretation. Shore-normal surveys across the barrier/wind-tidal flats show that σa is roughly negatively correlated with topography and these relationships can be used for characterizing different coastal habitats. For all surveys, σa increases with decreasing frequency. Alongshore surveys performed during different seasons and beach states reveal a high degree of variability in σa. Here, it is argued that surveys collected during dry conditions characterize the underlying framework geology, whereas these features are somewhat masked during wet conditions. Differences in EMI signals should be viewed in a relative sense rather than as absolute magnitudes. Small-scale heterogeneities are related to changing hydrology, whereas low-frequency signals at the broadest scales reveal variations in framework geology. Multiple surveys should be done at different times of the year and tidal states before geologic interpretations can confidently be made from EMI surveys in coastal environments. This strategy enables the geophysicist to separate the effects of hydrology and geology from the σa signal.

REFERENCES

  • Abdu, H., D. A. Robinson, and S. B. Jones, 2007, Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments: Soil Sciences Society of America, 71, 189–196, doi: 10.2136/sssaj2005.0394.CrossrefWeb of ScienceGoogle Scholar
  • Amdurer, M., and L. S. Land, 1982, Geochemistry, hydrology, and mineralogy of the Sand Bulge area, Laguna Madre flats, south Texas: Journal of Sedimentary Research, 52, 703–716, doi: 10.1306/212F8035-2B24-11D7-8648000102C1865D.JSERFV1527-1404CrossrefGoogle Scholar
  • Benavides, A., M. E. Everett, and C. Pierce Jr., 2009, Unexploded ordinance discrimination using time-domain electromagnetic induction and self-organizing maps: Stochastic Environmental Research and Risk Assessment, 23, 169–179, doi: 10.1007/s00477-007-0211-5.CrossrefWeb of ScienceGoogle Scholar
  • Brown, L. F., Jr., J. H. McGowen, T. J. Evans, C.G. Groat, and W. L. Fisher, 1977, Environmental geologic atlas of the Texas coastal zone: Kingsville area: Bureau of Economic Geology, University of Texas at Austin.Google Scholar
  • Christensen, N. B., and M. Halkjær, 2010, Mapping pollution and coastal hydrogeology with helicopterborne transient electromagnetic measurements: Exploration Geophysics, 45, 243–254, doi: 10.1071/EG13071.CrossrefWeb of ScienceGoogle Scholar
  • Delefortrie, S., P. De Smedt, T. Saey, E. Van De Vijver, and M. Van Meirvenne, 2014a, An efficient calibration procedure for correction of drift in EMI survey data: Journal of Applied Geophysics, 110, 115–125, doi: 10.1016/j.jappgeo.2014.09.004.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Delefortrie, S., T. Saey, E. Van De Vijver, P. De Smedt, T. Missiaen, I. Demerre, and M. Van Meirvenne, 2014b, Frequency domain electromagnetic induction survey in the intertidal zone: Limitations of low-induction-number and depth of exploration: Journal of Applied Geophysics, 100, 14–22, doi: 10.1016/j.jappgeo.2013.10.005.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • de Smet, T. S., M. E. Everett, C. J. Pierce, D. L. Pertermann, and D. B. Dickson, 2012, Electromagnetic induction in subsurface metal targets: cluster analysis using local point pattern spatial statistics: Geophysics, 77, no. 4, WB161–WB169, doi: 10.1190/geo2011-0391.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Everett, M. E., and C. J. Weiss, 2002, Geological noise in near‐surface electromagnetic induction data: Geophysical Research Letters, 29, 2001GL014049, doi: 10.1029/2001GL014049.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Everett, M. E., and C. Farquharson, 2012, Near-surface electromagnetic induction — Introduction: Geophysics, 77, no. 4, WB1–WB2, doi: 10.1190/geo-2012-0601-SPSEIN.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Everett, M. E., 2013, Near-surface applied geophysics: Cambridge University Press.CrossrefGoogle Scholar
  • Fisk, H. N., 1959, Padre Island and Laguna Madre Flats, coastal south Texas: Proceedings of the 2nd Coastal Geography Conference, Louisiana State University, 103–151.Google Scholar
  • Fitterman, D. V., and M. Deszcz-Pan, 1998, Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida: Exploration Geophysics, 29, 240–243, doi: 10.1071/EG998240.CrossrefGoogle Scholar
  • Frischknecht, F. C., V. F. Labson, B. R. Spies, and W. L. Anderson, 1991, Profiling methods using small sources, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics Vol. 2, Applications: SEG, Investigations in geophysics, 105–270.AbstractGoogle Scholar
  • Geophysical Survey Systems Incorporated, 2007, Profiler EMP-400 user’s manual: Geophysical Survey Systems Incorporated.Google Scholar
  • George, R., and P. Woodgate, 2002, Critical factors affecting the adoption of airborne geophysics for management of dryland salinity: Exploration Geophysics, 33, 84–89, doi: 10.1071/EG02084.CrossrefWeb of ScienceGoogle Scholar
  • Goldman, M., D. Gilad, A. Ronen, and A. Melloul, 1991, Mapping of seawater intrusion into the coastal aquifer of Israel by the time domain electromagnetic method: Geoexploration, 28, 153–174, doi: 10.1016/0016-7142(91)90046-F.GEOXAV0016-7142CrossrefGoogle Scholar
  • Guillemoteau, J., P. C. Sailhac, J. Boulanger, and J. Trules, 2015, Inversion of ground constant offset loop-loop electromagnetic data for a large range of induction numbers: Geophysics, 80, no. 1, E11–E21, doi: 10.1190/geo2014-0005.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Guillemoteau, J., and J. Tronicke, 2015, Non-standard electromagnetic induction sensor configurations: Evaluating sensitivities and applicability: Journal of Applied Geophysics, 118, 15–23, doi: 10.1016/j.jappgeo.2015.04.008.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Gradstein, F. M., J. G. Ogg, and M. van Kranendonk, 2008, On the geologic time scale 2008: Newsletters on Stratigraphy, 43, 5–13, doi: 10.1127/0078-0421/2008/0043-0005.NLSGAOCrossrefWeb of ScienceGoogle Scholar
  • Hayes, M. O., 1967, Hurricanes as geological agents: Case studies of Hurricanes Carla, 1961, and Cindy, 1963: The University of Texas, Bureau of Economic Geology, Report of Investigation 61.Google Scholar
  • Horn, D. P., 2002, Beach groundwater dynamics: Geomorphology, 48, 121–146, doi: 10.1016/S0169-555X(02)00178-2.CrossrefWeb of ScienceGoogle Scholar
  • Houser, C., and S. Mathew, 2011, Alongshore variation in foredune height in response to transport potential and sediment supply: South Padre Island, Texas: Geomorphology, 125, 62–72, doi: 10.1016/j.geomorph.2010.07.028.CrossrefWeb of ScienceGoogle Scholar
  • Huang, H., 2005, Depth of investigation for small broadband electromagnetic sensors: Geophysics, 70, no. 6, G135–G142, doi: 10.1190/1.2122412.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Huang, H., M. Deszcz-Pan, and B. Smith, 2008, Limitations of small EM sensors in resistive terrain: Proceedings of the 21st EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, 21, 163–180.Google Scholar
  • Huang, H., and I. J. Won, 2000, Conductivity and susceptibility mapping using broadband electromagnetic sensors: Journal of Environmental and Engineering Geophysics, 5, 31–41, doi: 10.4133/JEEG5.4.31.AbstractGoogle Scholar
  • Kocurek, G., M. Townsley, E. Yeh, K. G. Havholm, and M. L. Sweet, 1992, Dune and dune-field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation: Journal of Sedimentary Research, 62, 622–635, doi: 10.1306/D4267974-2B26-11D7-8648000102C1865D.JSERFV1527-1404CrossrefGoogle Scholar
  • Lanyon, J. A., I. G. Eliot, and D. J. Clarke, 1982, Groundwater-level variation during semidiurnal spring tidal cycles on a sandy beach: Australian Journal of Freshwater Resources, 33, 377–400, doi: 10.1071/MF9820377.CrossrefGoogle Scholar
  • McNeill, J., 1980, Electromagnetic terrain conductivity measurement at low induction numbers: Geonics Limited.Google Scholar
  • Miller, J. A., 1975, Facies characteristics of Laguna Madre wind-tidal flats, in R. N. Ginsburg, ed., Tidal deposits: Springer, 67–72.CrossrefGoogle Scholar
  • Morton, R. A., and J. H. McGowen, 1980, Modern depositional environments of the Texas coast: Bureau of Economic Geology, University of Texas at Austin, Guidebook 20.Google Scholar
  • Morton, R. A., G. H. Ward, and W. A. White, 2000, Rates of sediment supply and sea-level rise in a large coastal lagoon: Marine Geology, 167, 261–284, doi: 10.1016/S0025-3227(00)00030-X.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Morton, R. A., and C. W. Holmes, 2009, Geological processes and sedimentation rates of wind-tidal flats, Laguna Madre, Texas: Gulf Coast Association of Geological Societies Transactions, 59, 519–538.Google Scholar
  • Nabighian, M. N., and J. C. Macnae, 1991, Time domain electromagnetic prospecting methods, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics Vol. 2, Applications: SEG, Investigations in geophysics, 427–509.AbstractGoogle Scholar
  • Nenna, V., D. Herckenrath, R. Knight, N. Odlum, and D. McPhee, 2013, Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California: Geophysics, 78, no. 2, B77–B88, doi: 10.1190/geo2012-0004.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nettleton, L. L., 1940, Geophysical prospecting for oil: McGraw Hill Inc., 444.Google Scholar
  • Nielsen, P., 1990, Tidal dynamics of the water table in beaches: Water Resources Research, 26, 2127–2134, doi: 10.1029/WR026i009p02127.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Nielsen, P., 1999, Groundwater dynamics and salinity in coastal barriers: Journal of Coastal Research, 15, 732–740.JCRSEK0749-0208Web of ScienceGoogle Scholar
  • Nielsen, P., and H. Y. Kang, 1995, Ground water dynamics in beaches and coastal barriers, in W. R. DallyR. B. Zeidler, eds., Coastal dynamics ‘95: American Society of Civil Engineers, 521–532.Google Scholar
  • NOAA, 2013, Digital coast data access viewer, http://coast.noaa.gov/digitalcoast/data/coastallidar, accessed 01 December 2013.Google Scholar
  • NOAA, 2015a, National Hurricane Center, http://www.nhc.noaa.gov/data/, accessed 29 April 2015.Google Scholar
  • NOAA, 2015b, Tides and currents, http://tidesandcurrents.noaa.gov, accessed 18 October 2015.Google Scholar
  • Paine, J. G., W. A. White, R. C. Smyth, J. R. Andrews, and J. C. Gibeaut, 2004, Mapping coastal environments with lidar and EM on Mustang Island, Texas, US: The Leading Edge, 23, 894–898, doi: 10.1190/1.1803501.AbstractGoogle Scholar
  • Pérez-Flores, M. A., R. G. Antonio-Carpio, E. Gómez-Treviño, I. Ferguson, and S. Méndez-Delgado, 2012, Imaging of 3D electromagnetic data at low-induction numbers: Geophysics, 77, no. 4, WB47–WB57, doi: 10.1190/geo2011-0368.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pincus, J. A., T. S. de Smet, Y. Tepper, and M. J. Adams, 2013, Ground‐penetrating radar and electromagnetic archaeogeophysical investigations at the Roman Legionary Camp at Legio, Israel: Archaeological Prospection, 20, 175–188, doi: 10.1002/arp.1455.CrossrefWeb of ScienceGoogle Scholar
  • Santos, F. A., J. Triantafilis, K. E. Bruzgulis, and J. A. Roe, 2010, Inversion of multiconfiguration electromagnetic (DUALEM-421) profiling data using a one-dimensional laterally constrained algorithm: Vadose Zone Journal, 9, 117–125, doi: 10.2136/vzj2009.0088.CrossrefWeb of ScienceGoogle Scholar
  • Sasaki, Y., and M. A. Meju, 2006, A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks: Geophysical Journal International, 166, 59–66, doi: 10.1111/j.1365-246X.2006.02957.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Scott, J. H., 1983, Electrical and magnetic properties of rock and soil: U.S. Geological Survey, Report (No. 83-915).CrossrefGoogle Scholar
  • Seijmonsbergen, A. C., D. T. Biewinga, and A. P. Pruissers, 2004, A geophysical profile at the foot of the Dutch coastal dunes near the former outlet of the ‘Old Rhine’, Netherlands: Journal of Geosciences/Geologie en Mijnbouw, 83, 287–291, doi: 10.1017/S0016774600020370.CrossrefGoogle Scholar
  • Singh, N. P., and T. Mogi, 2003, Effective skin depth of EM fields due to large circular loop and electric dipole sources: Earth, Planets and Space, 55, 301–313, doi: 10.1186/BF03351764.EPSPFJ1343-8832CrossrefWeb of ScienceGoogle Scholar
  • Stevens, J. D., J. M. Sharp Jr., C. T. Simmons, and T. R. Fenstemaker, 2009, Evidence of free convection in groundwater: Field-based measurements beneath wind-tidal flats: Journal of Hydrology, 375, 394–409, doi: 10.1016/j.jhydrol.2009.06.035.JHYDA70022-1694CrossrefWeb of ScienceGoogle Scholar
  • Sudduth, K. A., N. R. Kitchen, D. B. Myers, and S. T. Drummond, 2010, Mapping depth to argillic soil horizons using apparent electrical conductivity: Journal of Environmental & Engineering Geophysics, 15, 135–146, doi: 10.2113/JEEG15.3.135.AbstractWeb of ScienceGoogle Scholar
  • Vrbancich, J., 2009, An investigation of seawater and sediment depth using a prototype airborne electromagnetic instrumentation system — A case study in Broken Bay, Australia: Geophysical Prospecting, 57, 633–651, doi: 10.1111/j.1365-2478.2008.00762.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Weise, B. R., and W. A. White, 1980, Padre Island National Seashore: A guide to the geology, natural environments, and history of a Texas barrier island: Bureau of Economic Geology, University of Texas at Austin 17.Google Scholar
  • West, G. F., and J. C. Macnae, 1991, Physics of the electromagnetic induction exploration method, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics Vol. 2, Applications: SEG, Investigations in geophysics, 5–45.AbstractGoogle Scholar
  • Weymer, B. A., M. E. Everett, T. S. de Smet, and C. Houser, 2015, Review of electromagnetic induction for mapping barrier island framework geology: Sedimentary Geology, 321, 11–24, doi: 10.1016/j.sedgeo.2015.03.005.SEGEBX0037-0738CrossrefWeb of ScienceGoogle Scholar
  • Won, I. J., D. A. Keiswetter, G. R. Fields, and L. C. Sutton, 1996, GEM-2: A new multifrequency electromagnetic sensor: Journal of Environmental and Engineering Geophysics, 1, 129–137, doi: 10.4133/JEEG1.2.129.AbstractGoogle Scholar