This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Full-waveform inversion (FWI) can be formulated as a nonlinear least-squares optimization problem. This nonconvex problem can be computationally expensive because it requires repeated solutions of the wave equation. Randomized subsampling techniques allow us to work with small subsets of (monochromatic) source experiments, reducing the computational cost. However, this subsampling may weaken subsurface illumination or introduce subsampling-related incoherent artifacts. These subsampling-related artifacts — in conjunction with the desire to obtain high-fidelity inversion results — motivate us to come up with a technique to regularize this inversion problem. Following earlier work, we have taken advantage of the fact that curvelets represent subsurface models and model perturbations parsimoniously. At first impulse, promoting sparsity on the model directly seemed the most natural way to proceed, but we have determined that in certain cases it can be advantageous to promote sparsity on the Gauss-Newton updates instead. Although constraining the one norm of the descent directions did not change the underlying FWI objective, the constrained model updates remained descent directions, removed subsampling-related artifacts, and improved the overall inversion result. We have empirically observed this phenomenon in situations where the different model updates occurred at roughly the same locations in the curvelet domain. We have further investigated and analyzed this behavior, in which nonlinear inversions benefit from sparsity-promoting constraints on the updates, by means of a set of carefully selected examples including the phase retrieval problem and time-harmonic FWI. In all cases, we have observed a faster decay of the residual and model error as a function of the number of iterations.

REFERENCES

  • Abubakar, A., and P. M. van den Berg, 2002, The contrast source inversion method for location and shape reconstructions: Inverse Problems, 18, 495–510, doi: 10.1088/0266-5611/18/2/313.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Aldawood, A., I. Hoteit, and T. Alkhalifah, 2014, The possibilities of compressed-sensing-based Kirchhoff prestack migration: Geophysics, 79, no. 3, S113–S120, doi: 10.1190/geo2013-0271.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Alkhalifah, T., 2015, Conditioning the full-waveform inversion gradient to welcome anisotropy: Geophysics, 80, no. 3, R111–R122, doi: 10.1190/geo2014-0390.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Askan, A., V. Akcelik, J. Bielak, and O. Ghattas, 2007, Full waveform inversion for seismic velocity and anelastic losses in heterogeneous structures: Bulletin of the Seismological Society of America, 97, 1990–2008, doi: 10.1785/0120070079.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Bauschke, H. H., P. L. Combettes, and D. R. Luke, 2002, Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization: Journal of the Optical Society of America A, 19, 1334–1345, doi: 10.1364/JOSAA.19.001334.JOAOD60740-3232CrossrefGoogle Scholar
  • Bunks, C., F. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1.1443880.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Burke, J. V., 1992, A robust trust region method for constrained nonlinear programming problems: SIAM Journal on Optimization, 2, 325–347, doi: 10.1137/0802016.SJOPE81095-7189CrossrefWeb of ScienceGoogle Scholar
  • Candès, E. J., L. Demanet, D. L. Donoho, and L. Ying, 2006, Fast discrete curvelet transforms: Multiscale Modeling and Simulation, 5, 861–899, doi: 10.1137/05064182X.CrossrefWeb of ScienceGoogle Scholar
  • Candès, E. J., J. Romberg, and T. Tao, 2005, Signal recovery from incomplete and inaccurate measurements: Communications on Pure and Applied Mathematics, 59, 1207–1223, doi: 10.1002/(ISSN)1097-0312.CPMAMV0010-3640CrossrefWeb of ScienceGoogle Scholar
  • Crase, E., A. Pica, M. Noble, J. McDonald, and A. Tarantola, 1990, Robust elastic nonlinear waveform inversion: Application to real data: Geophysics, 55, 527–538, doi: 10.1190/1.1442864.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52, 1289–1306, doi: 10.1109/TIT.2006.871582.IETTAW0018-9448CrossrefWeb of ScienceGoogle Scholar
  • Esser, E., L. Guasch, T. van Leeuwen, A. Y. Aravkin, and F. J. Herrmann, 2015a, Automatic salt delineation — Wavefield reconstruction inversion with convex constraints: 85th Annual International Meeting, SEG, Expanded Abstracts, 1337–1343.AbstractGoogle Scholar
  • Esser, E., F. Herrmann, L. Guasch, and M. Warner, 2015b, Constrained waveform inversion in salt-affected datasets: 85th Annual International Meeting, SEG, Expanded Abstracts, 1086–1090.AbstractGoogle Scholar
  • Gilbert, J. C., and J. Nocedal, 1992, Global convergence properties of conjugate gradient methods for optimization: SIAM Journal on Optimization, 2, 21–42, doi: 10.1137/0802003.SJOPE81095-7189CrossrefWeb of ScienceGoogle Scholar
  • Gratton, S., A. S. Lawless, and N. K. Nichols, 2007, Approximate Gauss-Newton methods for nonlinear least squares problems: SIAM Journal on Optimization, 18, 106–132, doi: 10.1137/050624935.CrossrefWeb of ScienceGoogle Scholar
  • Hansen, P. C., 1998, Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion: SIAM.CrossrefGoogle Scholar
  • Hennenfent, G., E. van den Berg, M. P. Friedlander, and F. J. Herrmann, 2008, New insights into one-norm solvers from the Pareto curve: Geophysics, 73, no. 4, A23–A26, doi: 10.1190/1.2944169.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Herrmann, F. J., C. R. Brown, Y. A. Erlangga, and P. P. Moghaddam, 2009, Curvelet-based migration preconditioning and scaling: Geophysics, 74, no. 4, A41–A46, doi: 10.1190/1.3124753.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Herrmann, F. J., M. P. Friedlander, and O. Yilmaz, 2012, Fighting the curse of dimensionality: Compressive sensing in exploration seismology: IEEE Signal Processing Magazine, 29, 88–100, doi: 10.1109/MSP.2012.2185859.ISPRE61053-5888CrossrefWeb of ScienceGoogle Scholar
  • Herrmann, F. J., and X. Li, 2010, Randomized dimensionality reduction for full-waveform inversion: 72nd Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201400799.CrossrefGoogle Scholar
  • Herrmann, F. J., and X. Li, 201-, Efficient least-squares imaging with sparsity promotion and compressive sensing: Geophysical Prospecting, 60, 696–712, doi: 10.1111/j.1365-2478.2011.01041.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Herrmann, F. J., X. Li, A. Y. Aravkin, and T. Van Leeuwen, 2011, A modified, sparsity-promoting, Gauss-Newton algorithm for seismic waveform inversion: SPIE Optical Engineering+ Applications, International Society for Optics and Photonics, 81380V–81380V.CrossrefGoogle Scholar
  • Herrmann, F. J., P. P. Moghaddam, and C. Stolk, 2008, Sparsity- and continuity-promoting seismic image recovery with curvelet frames: Applied and Computational Harmonic Analysis, 24, 150–173, doi: 10.1016/j.acha.2007.06.007.ACOHE91063-5203CrossrefWeb of ScienceGoogle Scholar
  • Hestenes, M. R., and E. Stiefel, 1952, Methods of conjugate gradients for solving linear systems: Journal of Research of the National Bureau of Standards, 49, 409–436, doi: 10.6028/jres.049.044.CrossrefWeb of ScienceGoogle Scholar
  • Horst, R., P. Pardalos, and N. Van Thoai, 2000, Introduction to global optimization: Springer, Nonconvex Optimization and Its Applications.CrossrefGoogle Scholar
  • Kumar, V., and F. J. Herrmann, 2009, Incoherent noise suppression with curvelet-domain sparsity: 79th Annual International Meeting, SEG, Expanded Abstracts, 3356–3360.AbstractGoogle Scholar
  • Li, X., A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann, 2012, Fast randomized full-waveform inversion with compressive sensing: Geophysics, 77, no. 3, A13–A17, doi: 10.1190/geo2011-0410.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, X., and F. J. Herrmann, 2010, Full-waveform inversion from compressively recovered model updates: 80th Annual International Meeting, SEG, Expanded Abstracts, 1029–1033.AbstractGoogle Scholar
  • Li, X., and F. J. Herrmann, 2013, Wave-equation based multi-parameter linearized inversion with joint-sparsity promotion: Technical Report No. TR-EOAS-2013–1.Google Scholar
  • Lin, T. T., and F. J. Herrmann, 2013, Robust estimation of primaries by sparse inversion via one-norm minimization: Geophysics, 78, no. 3, R133–R150, doi: 10.1190/geo2012-0097.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Métivier, L., R. Brossier, J. Virieux, and S. Operto, 2013, Full waveform inversion and the truncated Newton method: SIAM Journal on Scientific Computing, 35, B401–B437.CrossrefWeb of ScienceGoogle Scholar
  • Métivier, L., R. Brossier, S. Operto, and J. Virieux, 2015, Acoustic multi-parameter FWI for the reconstruction of P-wave velocity, density and attenuation: preconditioned truncated newton approach: 85th SEG Annual Meeting, Society of Exploration Geophysicists.Google Scholar
  • Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52, 1211–1228, doi: 10.1190/1.1442384.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nocedal, J., and S. J. Wright, 1999, Numerical optimization: Springer, Springer Series in Operations Research.CrossrefGoogle Scholar
  • Nocedal, J., and S. J. Wright, 2006, Least-squares problems: Springer.Google Scholar
  • Operto, S., Y. Gholami, V. Prieux, A. Ribodetti, R. Brossier, L. Metivier, and J. Virieux, 2013, A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice: The Leading Edge, 32, 1040–1054, doi: 10.1190/tle32091040.1.AbstractGoogle Scholar
  • Pratt, R. G., C. Shin, and G. Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998.00498.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Ruszczyński, A., 2006, Nonlinear optimization: Princeton University Press.CrossrefGoogle Scholar
  • Sacchi, M., J. Wang, and H. Kuehl, 2006, Regularized migration/inversion: New generation of seismic imaging algorithm: CSEG Recorder, 31, 55–59.Google Scholar
  • Shin, C., S. Jang, and D.-J. Min, 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory: Geophysical Prospecting, 49, 592–606, doi: 10.1046/j.1365-2478.2001.00279.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tarantola, A., 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geophysics, 51, 1893–1903, doi: 10.1190/1.1442046.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Tu, N., A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann, 2013, Fast least-squares migration with multiples and source estimation: 75th Annual International Conference and Exhibition, EAGE, Extended Abstracts.CrossrefGoogle Scholar
  • Tu, N., and F. J. Herrmann, 2015, Fast imaging with surface-related multiples by sparse inversion: Geophysical Journal International, 201, 304–317, doi: 10.1093/gji/ggv020.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Tu, N., T. T. Lin, and F. J. Herrmann, 2011, Sparsity-promoting migration with surface-related multiples: 73rd Annual International Conference and Exhibition, EAGE, Extended Abstracts.CrossrefGoogle Scholar
  • van den Berg, E., and M. P. Friedlander, 2008, Probing the Pareto frontier for basis pursuit solutions: SIAM Journal on Scientific Computing, 31, 890–912, doi: 10.1137/080714488.SJOCE31064-8275CrossrefWeb of ScienceGoogle Scholar
  • van den Berg, E., and M. P. Friedlander, 2011, Sparse optimization with least-squares constraints: SIAM Journal on Optimization, 21, 1201–1229, doi: 10.1137/100785028.SJOPE81095-7189CrossrefWeb of ScienceGoogle Scholar
  • van den Doel, K., U. Ascher, and E. Haber, 2013, The lost honour of l2-based regularization, in M. CullenM. FreitagS. KindernmannR. Scheichl eds., Large scale inverse problems, Radon Series in Computational and Applied Math 13, 181–203.CrossrefGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vogel, C. R., and M. E. Oman, 1996, Iterative methods for total variation denoising: SIAM Journal on Scientific Computing, 17, 227–238, doi: 10.1137/0917016.SJOCE31064-8275CrossrefWeb of ScienceGoogle Scholar
  • Warner, M., A. Ratcliffe, T. Nangoo, J. Morgan, A. Umpleby, N. Shah, V. Vinje, I. Štekl, L. Guasch, C. Win, G. Conroy, and A. Bertrand, 2013, Anisotropic 3D full-waveform inversion: Geophysics, 78, no. 2, R59–R80, doi: 10.1190/geo2012-0338.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar