This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Estimation of primaries by sparse inversion with scattering-based multiple predictions for data with large gaps

Authors:

We have solved the estimation of primaries by sparse inversion problem for a seismic record with large near-offset gaps and other contiguous holes in the acquisition grid without relying on explicit reconstruction of the missing data. Eliminating the unknown data as an explicit inversion variable is desirable because it sidesteps possible issues arising from overfitting the primary model to the estimated data. Instead, we have simulated their multiple contributions by augmenting the forward prediction model for the total wavefield with a scattering series that mimics the action of the free surface reflector within the area of the unobserved trace locations. Each term in this scattering series involves convolution of the total predicted wavefield once more with the current estimated Green’s function for a medium without the free surface at these unobserved locations. It is important to note that our method cannot by itself mitigate regular undersampling issues that result in significant aliases when computing the multiple contributions, such as source-receiver sampling differences or crossline spacing issues in 3D acquisition. We have investigated algorithms that handle the nonlinearity in the modeling operator due to the scattering terms, and we also determined that just a few of the terms can be enough to satisfactorily mitigate the effects of near-offset data gaps during the inversion process. Numerical experiments on synthetic data found that the final derived method can significantly outperform explicit data reconstruction for large near-offset gaps, with a similar computational cost and better memory efficiency. We have also found on real data that our scheme outperforms the unmodified primary estimation method that uses an existing Radon-based interpolation of the near-offset gap.

REFERENCES

  • Ahmed, A., B. Recht, and J. Romberg, 2012, Blind deconvolution using convex programming: IEEE Transactions on Information Theory, 60, 1711–1732, doi: 10.1109/TIT.2013.2294644.
  • AlMatar, M. H., 2010, Estimation of surface-free data by curvelet-domain matched filtering and sparse inversion: Master’s thesis, University of British Columbia.
  • Amundsen, L., 2001, Elimination of free-surface related multiples without need of the source wavelet: Geophysics, 66, 327–341, doi: 10.1190/1.1444912.GPYSA70016-8033.
  • Anstey, N. A., and P. Newman, 1966, Part I: The sectional auto-correlogram and Part II: The sectional retro-correlogram: Geophysical Prospecting, 14, 389–426.GPPRAR0016-8025
  • Berkhout, A. J., and Y. H. Pao, 1982, Seismic migration — Imaging of acoustic energy by wave field extrapolation: Journal of Applied Mechanics, 49, 682, doi: 10.1115/1.3162563.JAMCAV0021-8936
  • Berkhout, A. J., and D. J. Verschuur, 1997, Estimation of multiple scattering by iterative inversion. Part I: Theoretical considerations: Geophysics, 62, 1586–1595, doi: 10.1190/1.1444261.GPYSA70016-8033
  • Biggs, D. S. C., 1998, Accelerated iterative blind deconvolution: Ph.D. thesis, University of Auckland.
  • Birgin, E. G., J. M. Martinez, and M. Raydan, 2000, Nonmonotone spectral projected gradient methods on convex sets: SIAM Journal on Optimization, 10, 1196–1211, doi: 10.1137/S1052623497330963.SJOPE81095-7189
  • Bronstein, A., M. Bronstein, and M. Zibulevsky, 2005, Relative optimization for blind deconvolution: IEEE Transactions on Signal Processing, 53, 2018–2026, doi: 10.1109/TSP.2005.847822.ITPRED1053-587X
  • Cambois, G., D. Carlson, C. Jones, M. Lesnes, W. Söllner, and H. Tabti, 2009, Dual-sensor streamer data: Calibration, acquisition QC and attenuation of seismic interferences and other noises: Dual-sensor streamer data: Calibration, acquisition QC and attenuation of seismic interferences and other noises: 79th Annual International Meeting, SEG, Expanded Abstracts, 142–146.
  • Daubechies, I., M. Fornasier, and I. Loris, 2008, Accelerated projected gradient method for linear inverse problems with sparsity constraints: Journal of Fourier Analysis and Applications, 14, 764–792, doi: 10.1007/s00041-008-9039-8.
  • Dragoset, B., D. J. Verschuur, I. Moore, and R. Bisley, 2010, A perspective on 3D surface-related multiple elimination: Geophysics, 75, no. 5, 75A245, doi: 10.1190/1.3475413.GPYSA70016-8033
  • Fleischer, G., R. Gorenflo, and B. Hofmann, 1999, On the autoconvolution equation and total variation constraints: Journal of Applied Mathematics and Mechanics, 79, 149–159, doi: 10.1002/(ISSN)1521-4001.
  • Fleischer, G., and B. Hofmann, 1996, On inversion rates for the autoconvolution equation: Inverse Problems, 12, 419–435, doi: 10.1088/0266-5611/12/4/006.INPEEY0266-5611
  • Fokkema, J. T., and P. M. van den Berg, 1993, Seismic applications of acoustic reciprocity: Elsevier Science.
  • Frijlink, M. O., R. G. van Borselen, and W. Söllner, 2011, The free surface assumption for marine data-driven demultiple methods: Geophysical Prospecting, 59, 269–278, doi: 10.1111/gpr.2011.59.issue-2.GPPRAR0016-8025
  • Hennenfent, G., L. Fenelon, and F. J. Herrmann, 2010, Nonequispaced curvelet transform for seismic data reconstruction: A sparsity-promoting approach: Geophysics, 75, no. 6, WB203–WB210.
  • Hennenfent, G., E. van den Berg, M. P. Friedlander, and F. J. Herrmann, 2008, New insights into one-norm solvers from the Pareto curve: Geophysics, 73, no. 4, A23.
  • Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173, 233–248, doi: 10.1111/gji.2008.173.issue-1.GJINEA0956-540X
  • Kabir, M. N., and D. Verschuur, 1995, Restoration of missing offsets by parabolic Radon transform: Geophysical Prospecting, 43, 347–368, doi: 10.1111/gpr.1995.43.issue-3.GPPRAR0016-8025
  • Kreimer, N., A. Stanton, and M. D. Sacchi, 2013, Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction: Geophysics, 78, no. 6, V273–V284, doi: 10.1190/geo2013-0022.1.GPYSA70016-8033
  • Kumar, R., C.D. Silva, O. Akalin, A. Y. Aravkin, H. Mansour, B. Recht, and F. J. Herrmann, 2015, Efficient matrix completion for seismic data reconstruction: Geophysics, 80, no. 5, V97–V11410, doi: 1190/geo2014-0369.1.
  • Li, X., A. Y. Aravkin, T. van Leeuwen, and F. J. Herrmann, 2012, Fast randomized full-waveform inversion with compressive sensing: Geophysics, 77, no. 3, A13–A17, doi: 10.1190/geo2011-0410.1.GPYSA70016-8033
  • Lin, T. T. Y., and F. J. Herrmann, 2013, Robust estimation of primaries by sparse inversion via one-norm minimization: Geophysics, 78, no. 3, R133–R150, doi: 10.1190/geo2012-0097.1.GPYSA70016-8033
  • Ma, J., 2013, Three-dimensional irregular seismic data reconstruction via low-rank matrix completion: Geophysics, 78, V181–V192, doi: 10.1190/geo2012-0465.1.GPYSA70016-8033
  • Majdański, M., C. Kostov, E. Kragh, I. Moore, M. Thompson, and J. Mispel, 2011, Attenuation of free-surface multiples by up/down deconvolution for marine towed-streamer data: Geophysics, 76, no. 6, V129–V138, doi: 10.1190/geo2010-0337.1.GPYSA70016-8033
  • Riley, D. C., and J. F. Claerbout, 1976, 2-D multiple reflections: Geophysics, 41, 592–620, doi: 10.1190/1.1440638.GPYSA70016-8033
  • Tibshirani, R., 1996, Regression shrinkage and selection via the Lasso: Journal of the Royal Statistical Society Series B Methodological, 58, 267–288.
  • van den Berg, E., and M. P. Friedlander, 2008, Probing the Pareto frontier for basis pursuit solutions: SIAM Journal on Scientific Computing, 31, 890–912, doi: 10.1137/080714488.SJOCE31064-8275
  • van Groenestijn, G. J. A., and D. J. Verschuur, 2009, Estimating primaries by sparse inversion and application to near-offset data reconstruction: Geophysics, 74, no. 6, A23–A28, doi: 10.1190/1.3111115.GPYSA70016-8033
  • Verschuur, D. J., 2006, Seismic multiple removal techniques: Past, present and future: EAGE Publications.
  • Verschuur, D. J., and A. J. Berkhout, 1997, Estimation of multiple scattering by iterative inversion. Part II: Practical aspects and examples: Geophysics, 62, 1596–1611, doi: 10.1190/1.1444262.GPYSA70016-8033
  • Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166–1177, doi: 10.1190/1.1443330.GPYSA70016-8033
  • Weglein, A. B., F. V. Araújo, P. M. Carvalho, R. H. Stolt, K. H. Matson, R. T. Coates, D. Corrigan, D. J. Foster, S. A. Shaw, and H. Zhang, 2003, Inverse scattering series and seismic exploration: Inverse Problems, 19, R27–R83, doi: 10.1088/0266-5611/19/6/R01.
  • Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt, 1997, An inverse-scattering series method for attenuating multiples in seismic reflection data: Geophysics, 62, 1975–1989, doi: 10.1190/1.1444298.GPYSA70016-8033
  • Ziolkowski, A. M., D. B. Taylor, and R. G. K. Johnston, 1999, Marine seismic wavefield measurement to remove sea-surface multiples: Geophysical Prospecting, 47, 841–870, doi: 10.1046/j.1365-2478.1999.00165.x.GPPRAR0016-8025