This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

We have developed the open-source software Tesseroids, a set of command-line programs to perform forward modeling of gravitational fields in spherical coordinates. The software is implemented in the C programming language and uses tesseroids (spherical prisms) for the discretization of the subsurface mass distribution. The gravitational fields of tesseroids are calculated numerically using the Gauss-Legendre quadrature (GLQ). We have improved upon an adaptive discretization algorithm to guarantee the accuracy of the GLQ integration. Our implementation of adaptive discretization uses a “stack-based” algorithm instead of recursion to achieve more control over execution errors and corner cases. The algorithm is controlled by a scalar value called the distance-size ratio (D) that determines the accuracy of the integration as well as the computation time. We have determined optimal values of D for the gravitational potential, gravitational acceleration, and gravity gradient tensor by comparing the computed tesseroids effects with those of a homogenous spherical shell. The values required for a maximum relative error of 0.1% of the shell effects are D=1 for the gravitational potential, D=1.5 for the gravitational acceleration, and D=8 for the gravity gradients. Contrary to previous assumptions, our results show that the potential and its first and second derivatives require different values of D to achieve the same accuracy. These values were incorporated as defaults in the software.

REFERENCES

  • Álvarez, O., M. Gimenez, C. Braitenberg, and A. Folguera, 2012, GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region: GOCE derivatives in the south central Andes: Geophysical Journal International, 190, 941–959, doi: 10.1111/gji.2012.190.issue-2.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Asgharzadeh, M. F., R. R. B. von Frese, H. R. Kim, T. E. Leftwich, and J. W. Kim, 2007, Spherical prism gravity effects by Gauss-legendre quadrature integration: Geophysical Journal International, 169, 1–11, doi: 10.1111/gji.2007.169.issue-1.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Barrera-Figueroa, V., J. Sosa-Pedroza, and J. López-Bonilla, 2006, Multiple root finder algorithm for legendre and Chebyshev polynomials via Newton’s method: Annales Mathematicae et Informaticae, 3–13.Google Scholar
  • Bouman, J., J. Ebbing, and M. Fuchs, 2013a, Reference frame transformation of satellite gravity gradients and topographic mass reduction: Journal of Geophysical Research: Solid Earth, 118, 759–774, doi: 10.1029/2012JB009747.CrossrefWeb of ScienceGoogle Scholar
  • Bouman, J., J. Ebbing, S. Meekes, R. Abdul Fattah, M. Fuchs, S. Gradmann, R. Haagmans, V. Lieb, M. Schmidt, D. Dettmering, and W. Bosch, 2013b, GOCE gravity gradient data for lithospheric modeling: International Journal of Applied Earth Observation and Geoinformation, 35, 16–30, doi: 10.1016/j.jag.2013.11.001.CrossrefWeb of ScienceGoogle Scholar
  • Braitenberg, C., 2015, Exploration of tectonic structures with GOCE in Africa and across-continents: International Journal of Applied Earth Observation and Geoinformation, 35, 88–95, doi: 10.1016/j.jag.2014.01.013.CrossrefWeb of ScienceGoogle Scholar
  • Braitenberg, C., P. Mariani, and A. De Min, 2013, The European Alps and nearby orogenic belts sensed by GOCE: Bollettino di Geofisica Teorica e Applicata, 54, 321–334.Web of ScienceGoogle Scholar
  • Braitenberg, C., P. Mariani, J. Ebbing, and M. Sprlak, 2011, The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields: Geological Society, Special Publications, 357, 329–341, doi: 10.1144/SP357.18.CrossrefGoogle Scholar
  • Fullea, J., J. Rodríguez-González, M. Charco, Z. Martinec, A. Negredo, and A. Villaseñor, 2014, Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: Application to the atlantic-mediterranean transition zone: International Journal of Applied Earth Observation and Geoinformation, 35, 54–69, doi: 10.1016/j.jag.2014.02.003.CrossrefWeb of ScienceGoogle Scholar
  • Grombein, T., K. Seitz, and B. Heck, 2013, Optimized formulas for the gravitational field of a tesseroid: Journal of Geodesy, 87, 645–660, doi: 10.1007/s00190-013-0636-1.JOGEF80949-7714CrossrefWeb of ScienceGoogle Scholar
  • Heck, B., and K. Seitz, 2007, A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling: Journal of Geodesy, 81, 121–136, doi: 10.1007/s00190-006-0094-0.JOGEF80949-7714CrossrefWeb of ScienceGoogle Scholar
  • Hildebrand, F. B., 1987, Introduction to numerical analysis: Dover Publications.Google Scholar
  • Hunter, J. D., 2007, Matplotlib: A 2D graphics environment: Computing in Science & Engineering, 9, 90–95, doi: 10.1109/MCSE.2007.55.CrossrefWeb of ScienceGoogle Scholar
  • Ku, C. C., 1977, A direct computation of gravity and magnetic anomalies caused by 2-and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent-point method and a simplified cubic spline: Geophysics, 42, 610–622, doi: 10.1190/1.1440732.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • LaFehr, T., 1991, An exact solution for the gravity curvature (Bullard B) correction: Geophysics, 56, 1179–1184, doi: 10.1190/1.1443138.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Li, Z., T. Hao, Y. Xu, Y. Xu, 2011, An efficient and adaptive approach for modeling gravity effects in spherical coordinates: Journal of Applied Geophysics, 73, 221–231, doi: 10.1016/j.jappgeo.2011.01.004.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Mariani, P., C. Braitenberg, and N. Ussami, 2013, Explaining the thick crust in Paraná Basin, Brazil, with satellite GOCE gravity observations: Journal of South American Earth Sciences, 45, 209–223, doi: 10.1016/j.jsames.2013.03.008.JAESE90895-9811CrossrefWeb of ScienceGoogle Scholar
  • McKinney, W., 2010, Data structures for statistical computing in Python: Proceedings of the 9th Python in Science Conference, 51–56.CrossrefGoogle Scholar
  • Mikuška, J., R. Pašteka, and I. Marušiak, 2006, Estimation of distant relief effect in gravimetry: Geophysics, 71, no. 6, J59–J69, doi: 10.1190/1.2338333.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pérez, F., and B. E. Granger, 2007, IPython: a system for interactive scientific computing: Computing in Science and Engineering, 9, 21–29, doi: 10.1109/MCSE.2007.53.CSENFA1521-9615CrossrefWeb of ScienceGoogle Scholar
  • Ramachandran, P., and G. Varoquaux, 2011, Mayavi: 3D visualization of scientific data: Computing in Science & Engineering, 13, 40–51, doi: 10.1109/MCSE.2011.35.CrossrefWeb of ScienceGoogle Scholar
  • Reguzzoni, M., D. Sampietro, and F. Sanso, 2013, Global Moho from the combination of the CRUST2.0 model and GOCE data: Geophysical Journal International, 195, 222–237, doi: 10.1093/gji/ggt247.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Uieda, L., 2015a, A tesserioid (spherical prism) in a geocentric coordinate system with a local-north-oriented coordinate system: figshare, http://dx.doi.org/10.6084/m9.figshare.1495525, accessed 20 May 2016.Google Scholar
  • UiedaL., 2015b, Tesseroids: Forward modeling in spherical coordinates. Open-source package, http://tesseroids.leouieda.com/en/latest/ and http://zenodo.org/record/16033, accessed 30 June 2016.Google Scholar
  • Uieda, L., V. C. F. Barbosa, and C. Braitenberg, 2016, Source code repository for “Tesseroids: Forward-modeling gravitational fields in spherical coordinates”, https://github.com/pinga-lab/paper-tesseroids, accessed 20 May 2016.Google Scholar
  • Wild-Pfeiffer, F., 2008, A comparison of different mass elements for use in gravity gradiometry: Journal of Geodesy, 82, 637–653, doi: 10.1007/s00190-008-0219-8.JOGEF80949-7714CrossrefWeb of ScienceGoogle Scholar