This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


A rock-physics investigation of unconsolidated saline permafrost: P-wave properties from laboratory ultrasonic measurements


Saline permafrost is sensitive to thermal disturbances and is prone to subsidence, which renders it a major source of geohazard in Arctic coastal environments. Seismic methods could be used to map and monitor saline permafrost at scales of geotechnical interests because of the ice-content dependencies of seismic properties. We have developed a comprehensive study of the ultrasonic P-wave properties (i.e., velocity and attenuation) of synthetic saline permafrost samples for a range of salinities and temperatures, and measurements conducted on a fine-grained permafrost core obtained from Barrow, Alaska. The resulting data consist of P-wave properties presented as functions of temperature and salinity. Notable observations include the following: P-wave velocities showed marked reductions in the presence of dissolved salts and complex variations resulting from the water-to-ice phase transitions; strong P-wave attenuation was present in the temperature intervals in which the samples were partially frozen. When presented as functions of ice saturation, the data sets lead us to two key findings: (1) neither a purely cementing nor a purely pore-filling model of the pore-scale distributions of ice could adequately fit the observed velocity data and (2) although the velocities increase monotonically with increasing ice saturations, P-wave attenuation reaches a maximum at intermediate ice saturations—contrary to the ordinary expectation of decreasing attenuation with increasing velocities. The observed ice-content dependencies of P-wave properties, along with the implications on the probable pore-scale distributions of ice, provide a valuable basis for rock-physics modeling, which in turn could facilitate seismic characterizations of saline permafrost.


  • Andersland, O. B., and B. Ladanyi, 2004, Frozen ground engineering, 2nd ed.: Wiley, American Society of Civil Engineers.Google Scholar
  • Anderson, R., B. Tohidi, and J. B. W. Webber, 2009, Gas hydrate growth and dissociation in narrow pore networks: Capillary inhibition and hysteresis phenomena: Geological Society of London, Special Publications, 319, 145–159, doi: 10.1144/SP319.12.CrossrefGoogle Scholar
  • Batzle, M., and Z. Wang, 1992, Seismic properties of pore fluids: Geophysics, 57, 1396–1408, doi: 10.1190/1.1443207.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bittelli, M., M. Flury, and G. S. Campbell, 2003, A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media: Water Resources Research, 39, 1041, doi: 10.1029/2001WR000930.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Blachere, J. R., and J. E. Young, 1972, The freezing point of water in porous glass: Journal of the American Ceramic Society, 55, 306–308, doi: 10.1111/j.1151-2916.1972.tb11291.x.JACTAW0002-7820CrossrefWeb of ScienceGoogle Scholar
  • Brouchkov, A., 2002, Nature and distribution of frozen saline sediments on the Russian Arctic coast: Permafrost and Periglacial Processes, 13, 83–90, doi: 10.1002/ppp.411.PEPPED1099-1530CrossrefWeb of ScienceGoogle Scholar
  • Brouchkov, A., 2003, Frozen saline soils of the Arctic coast: Their distribution and engineering properties: Proceedings of the 8th International Conference on Permafrost, National Academy of Sciences.Google Scholar
  • Carcione, J. M., O. H. Campanella, and J. E. Santos, 2007, A poroelastic model for wave propagation in partially frozen orange juice: Journal of Food Engineering, 80, 11–17, doi: 10.1016/j.jfoodeng.2006.04.044.JFOEDH0260-8774CrossrefWeb of ScienceGoogle Scholar
  • Collett, T. S., and K. J. Bird, 1988, Freezing-point depression at the base of the ice-bearing permafrost on the North Slope of Alaska: Proceedings of the 5th International Conference on Permafrost, Tapir Publishers.Google Scholar
  • Collett, T. S., and K. J. Bird, 1993, Unfrozen, high-salinity intervals within ice-bearing permafrost, North Slope of Alaska: Proceedings of the 6th International Conference on Permafrost, South China University of Technology Press.Google Scholar
  • Davis, T. N., 2001, Permafrost: A guide to frozen ground in transition: University of Alaska Press.Google Scholar
  • Desai, K. P., and E. J. Moore, 1967, Well log interpretation in permafrost: SPWLA 8th Annual Logging Symposium, Society of Petrophysicists and Well Log Analysts.Google Scholar
  • Dou, S., and J. Ajo-Franklin, 2014, Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost: Geophysics, 79, no. 6, EN107–EN124, doi: 10.1190/geo2013-0427.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dvorkin, J., J. Berryman, and A. Nur, 1999, Elastic moduli of cemented sphere packs: Mechanics of Materials, 31, 461–469, doi: 10.1016/S0167-6636(99)00009-5.MSMSD30167-6636CrossrefWeb of ScienceGoogle Scholar
  • Dvorkin, J., and A. Nur, 1996, Elasticity of high-porosity sandstones: Theory for two North Sea data sets: Geophysics, 61, 1363–1370, doi: 10.1190/1.1444059.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Dvorkin, J., A. Nur, and H. Yin, 1994, Effective properties of cemented granular materials: Mechanics of Materials, 18, 351–366, doi: 10.1016/0167-6636(94)90044-2.MSMSD30167-6636CrossrefWeb of ScienceGoogle Scholar
  • Fagerlund, G., 1973, Determination of pore-size distribution from freezing-point depression: Matériaux et Construction, 6, 215–225, doi: 10.1007/BF02479036.CrossrefGoogle Scholar
  • Hall, C., and W. D. Hoff, 2012, Frost damage: Water transport in brick, stone, and concrete: Spon Press, 277–288.Google Scholar
  • Helgerud, M. B., 2001, Wave speeds in gas hydrate and sediments containing gas hydrate: A laboratory and modeling study: Ph.D. dissertation, Stanford University.Google Scholar
  • Hilbich, C., 2010, Time-lapse refraction seismic tomography for the detection of ground ice degradation: The Cryosphere, 4, 243–259, doi: 10.5194/tc-4-243-2010.CrossrefWeb of ScienceGoogle Scholar
  • Hivon, E. G., and D. C. Sego, 1993, Distribution of saline permafrost in the Northwest Territories, Canada: Canadian Geotechnical Journal, 30, 506–514, doi: 10.1139/t93-043.CGJOAH1208-6010CrossrefWeb of ScienceGoogle Scholar
  • Hivon, E. G., and D. C. Sego, 1995, Strength of frozen saline soils: Canadian Geotechnical Journal, 32, 336–354, doi: 10.1139/t95-034.CGJOAH1208-6010CrossrefWeb of ScienceGoogle Scholar
  • Ingeman-Nielsen, T., N. N. Foged, and A. S. Jørgensen, 2008, Geophysical investigation of saline permafrost at Ilulissat, Greenland: Proceedings of the 9th International Conference on Permafrost, Institute of Northern Engineering, University of Alaska Fairbanks.Google Scholar
  • King, M. S., B. I. Pandit, J. A. Hunter, and M. Gajtani, 1982, Some seismic, electrical, and thermal properties of sub-seabottom permafrost from the Beaufort Sea: Proceedings of the 4th Canadian Permafrost Conference, National Research Council Canada.Google Scholar
  • Kofman, R., A. Rabbani, G. Njiekak, and D. R. Schmitt, 2013, Influence of cooling and heating rate on CO2 condensation and evaporation observed in a saturated synthetic rock sample: GeoConvention.Google Scholar
  • Kozlowski, T., and E. Nartowska, 2013, Unfrozen water content in representative bentonites of different origin subjected to cyclic freezing and thawing: Vadose Zone Journal, 12, doi: 10.2136/vzj2012.0057.CrossrefWeb of ScienceGoogle Scholar
  • Matsushima, J., M. Suzuki, Y. Kato, and S. Rokugawa, 2011a, Laboratory measurements of ultrasonic P-wave and S-wave attenuation in partially frozen unconsolidated sediments saturated with brine: 81st Annual International Meeting, SEG, Expanded Abstracts, 2130–2134.AbstractGoogle Scholar
  • Matsushima, J., M. Suzuki, Y. Kato, and S. Rokugawa, 2011b, Estimation of ultrasonic scattering attenuation in partially frozen brines using magnetic resonance images: Geophysics, 76, no. 1, T13–T25, doi: 10.1190/1.3511355.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Matsushima, J., M. Suzuki, Y. Kato, and S. Rokugawa, 2013, Effects of viscosity of unfrozen brine in partially frozen unconsolidated sediments on ultrasonic wave attenuation: Proceedings of the 11th SEGJ International Symposium, SEG, 383–386.AbstractGoogle Scholar
  • Miller, R. D., J. A. Hunter, W. E. Doll, B. J. Carr, R. A. Burns, R. L. Good, D. R. Laflen, and M. Douma, 2000, Imaging permafrost with shallow P- and S-wave reflection: 70th Annual International Meeting, SEG, Expanded Abstracts, 1339–1342.AbstractGoogle Scholar
  • Müller, T., B. Gurevich, and M. Lebedev, 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — A review: Geophysics, 75, no. 5, 75A147–175A164, doi: 10.1190/1.3463417.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nakano, Y., and R. Arnold, 1973, Acoustic properties of frozen Ottawa sand: Water Resources Research, 9, 178–184, doi: 10.1029/WR009i001p00178.CrossrefWeb of ScienceGoogle Scholar
  • Nakano, Y., and N. H. Froula, 1973, Sound and shock transmission in frozen soils: Proceedings of the 2nd International Conference on Permafrost, National Academy of Sciences.Google Scholar
  • Nixon, J. F., and G. Lem, 1984, Creep and strength testing of frozen saline fine-grained soils: Canadian Geotechnical Journal, 21, 518–529, doi: 10.1139/t84-054.CGJOAH1208-6010CrossrefWeb of ScienceGoogle Scholar
  • Ogata, N., M. Yasuda, and T. Kataoka, 1983, Effects of salt concentration on strength and creep behavior of artificially frozen soils: Cold Regions Science and Technology, 8, 139–153, doi: 10.1016/0165-232X(83)90005-8.CRSTDL0165-232XCrossrefWeb of ScienceGoogle Scholar
  • Osterkamp, T. E., 1989, Occurrence and potential importance of saline permafrost in Alaska: Workshop on Saline Permafrost, University of Manitoba.Google Scholar
  • Pandit, B. I., and M. S. King, 1978, Influence of pore fluid salinity on seismic and electrical properties of rocks at permafrost temperatures: Proceedings of International Conference on Permafrost, U.S. National Academy of Sciences.Google Scholar
  • Pandit, B. I., and M. S. King, 1979, A study of the effects of pore-water salinity on some physical properties of sedimentary rocks at permafrost temperatures: Canadian Journal of Earth Sciences, 16, 1566–1580, doi: 10.1139/e79-143.CJESAP0008-4077CrossrefWeb of ScienceGoogle Scholar
  • Potter, R. W., M. A. Clynne, and D. L. Brown, 1978, Freezing point depression of aqueous sodium chloride solutions: Economic Geology, 73, 284–285, doi: 10.2113/gsecongeo.73.2.284.ECGLAL0361-0128CrossrefWeb of ScienceGoogle Scholar
  • Povey, M. J. W., 1997, Multiphase media: Ultrasonic techniques for fluids characterization: Academic Press, 47–90.CrossrefGoogle Scholar
  • Prasad, M., and J. Dvorkin, 2004, Velocity and attenuation of compressional waves in brines: 74th Annual International Meeting, SEG, Expanded Abstracts, 1666–1669.AbstractGoogle Scholar
  • Ramachandran, K., G. Bellefleur, T. Brent, M. Riedel, and S. Dallimore, 2011, Imaging permafrost velocity structure using high resolution 3D seismic tomography: Geophysics, 76, no. 5, B187–B198, doi: 10.1190/geo2010-0353.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Schmitt, D. R., M. Welz, and C. D. Rokosh, 2005, High-resolution seismic imaging over thick, permafrost at the 2002 Mallik drill site, in S. R. DallimoreT. S. Collett, eds., Scientific results from the Mallik 2002 gas hydrate production research well program Mackenzie Delta, Northwest Territories, Canada: Geological Survey of Canada Bulletin 585.CrossrefGoogle Scholar
  • Schön, J., 2011, Physical properties of rocks: A workbook (Handbook of petroleum exploration and production): Elsevier.Google Scholar
  • Setzer, M. J., 1997, Basis of testing the freeze-thaw resistance: Surface and internal deterioration, in R. AubergM. J. Setzer, eds., Frost resistance of concrete: CRC Press, 166–181.Google Scholar
  • Sondergeld, C., and C. Rai, 2007, Velocity and resistivity changes during freeze-thaw cycles in Berea sandstone: Geophysics, 72, no. 2, E99–E105, doi: 10.1190/1.2435198.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Spaans, E. J. A., and J. M. Baker, 1996, The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic: Soil Science Society of America Journal, 60, 13–19, doi: 10.2136/sssaj1996.03615995006000010005x.SSSJD41435-0661CrossrefWeb of ScienceGoogle Scholar
  • Spetzler, H., and D. L. Anderson, 1968, The effect of temperature and partial melting on velocity and attenuation in a simple binary system: Journal of Geophysical Research, 73, no. 18, 6051–6060, doi: 10.1029/JB073i018p06051.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Timur, A., 1968, Velocity of compressional waves in porous media at permafrost temperatures: Geophysics, 33, 584–595, doi: 10.1190/1.1439954.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wilson, P. W., A. F. Heneghan, and A. D. J. Haymet, 2003, Ice nucleation in nature: Supercooling point (SCP) measurements and the role of heterogeneous nucleation: Cryobiology, 46, 88–98, doi: 10.1016/S0011-2240(02)00182-7.CRYBAS0011-2240CrossrefWeb of ScienceGoogle Scholar
  • Zachariassen, K. E., 2005, Freezing and supercooling of water: Water Encyclopedia: John Wiley & Sons Inc.CrossrefGoogle Scholar
  • Zimmerman, R. W., and M. S. King, 1986, The effect of the extent of freezing on seismic velocities in unconsolidated permafrost: Geophysics, 51, 1285–1290, doi: 10.1190/1.1442181.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar