This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×
On Tuesday, 28 May 2024, from 1:00 am CDT to 1:00 pm CDT, the SEG Library will undergo a major site upgrade. During this time, users will be able to access their accounts, but certain features may be unavailable. We apologize for the inconvenience.

Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region

Authors:

Shallow permafrost distribution and characteristics are important for predicting ecosystem feedbacks to a changing climate over decadal to century timescales because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrologic and biogeochemical responses, including greenhouse gas dynamics. As part of the U.S. Department of Energy Next-Generation Ecosystem Experiments-Arctic, we have investigated shallow Arctic permafrost characteristics at a site in Barrow, Alaska, with the objective of improving our understanding of the spatial distribution of shallow permafrost, its associated properties, and its links with landscape microtopography. To meet this objective, we have acquired and integrated a variety of information, including electric resistance tomography data, frequency-domain electromagnetic induction data, laboratory core analysis, petrophysical studies, high-resolution digital surface models, and color mosaics inferred from kite-based landscape imaging. The results of our study provide a comprehensive and high-resolution examination of the distribution and nature of shallow permafrost in the Arctic tundra, including the estimation of ice content, porosity, and salinity. Among other results, porosity in the top 2 m varied between 85% (besides ice wedges) and 40%, and was negatively correlated with fluid salinity. Salinity directly influenced ice and unfrozen water content and indirectly influenced the soil organic matter content. A relatively continuous but depth-variable increase in salinity led to a partially unfrozen saline layer (cryopeg) located below the top of the permafrost. The cryopeg environment could lead to year-round microbial production of greenhouse gases. Results also indicated a covariability between topography and permafrost characteristics including ice-wedge and salinity distribution. In addition to providing insight about the Arctic ecosystem, through integration of lab-based petrophysical results with field data, this study also quantified the key controls on electric resistivity at this Arctic permafrost site, including salinity, porosity, water content, ice content, soil organic matter content, and lithologic properties.

REFERENCES

  • Aksenov, V. I., N. G. Bubnov, G. I. Klinova, A. V. Iospa, and S. G. Gevorkyan, 2011, Water phase transformations in frozen soil under the effect of cryopegs: Water Resources, 38, 934–943, doi: 10.1134/S0097807811070025.WARED40097-8078CrossrefWeb of ScienceGoogle Scholar
  • Archie, G. E., 1945, Electrical resistivity log as an aid in determining some reservoir characteristics: Transactions of the American Institute of Mining and Metallurgical Engineers, 146, 322–323, doi: 10.2118/942054-G.CrossrefGoogle Scholar
  • Atekwana, E. A., R. S. Rowe, D. D. Werkema, and F. D. Legall, 2004, The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon: Journal of Applied Geophysics, 56, 281–294.JAGPEA0926-9851, doi: 10.1016/S0926-9851(04)00057-6.CrossrefWeb of ScienceGoogle Scholar
  • Berni, J. A. J., P. J. Zarco-Tejada, L. Suarez, and E. Fereres, 2009, Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle: IEEE Transactions on Geoscience and Remote Sensing, 47, 722–738.IGRSD20196-2892, doi: 10.1109/TGRS.2008.2010457.CrossrefWeb of ScienceGoogle Scholar
  • Binley, A., and A. Kemna, 2005, DC resistivity and induced polarization methods, in Y. RubinS. S. Hubbard, eds., Hydrogeophysics: Springer, 129–156.CrossrefGoogle Scholar
  • Black, R. F., 1964, Gubik formation of Quaternary age in northern Alaska: U.S. Geological Survey.CrossrefGoogle Scholar
  • Bockheim, J. G., 2007, Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils: Soil Science Society of America Journal, 71, 1335–1342, doi: 10.2136/sssaj2006.0414N.SSSJD41435-0661CrossrefWeb of ScienceGoogle Scholar
  • Bockheim, J. G., L. R. Everett, K. M. Hinkel, F. E. Nelson, and J. Brown, 1999, Soil organic carbon storage and distribution in Arctic Tundra, Barrow, Alaska: Soil Science Society of America Journal, 63, 934–940, doi: 10.2136/sssaj1999.634934x.SSSJD41435-0661CrossrefWeb of ScienceGoogle Scholar
  • Bockheim, J. G., K. M. Hinkel, and F. E. Nelson, 2003, Predicting carbon storage in tundra soils of arctic Alaska: Soil Science Society of America Journal, 67, 948–950, doi: 10.2136/sssaj2003.0948.SSSJD41435-0661CrossrefWeb of ScienceGoogle Scholar
  • Bodnar, R. J., 1993, Revised equation and table for determining the freezing-point depression of H2O-NACL solutions: Geochimica et Cosmochimica Acta, 57, 683–684, doi: 10.1016/0016-7037(93)90378-A.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • Brouchkov, A., 2002, Nature and distribution of frozen saline sediments on the Russian Arctic coast: Permafrost and Periglacial Processes, 13, 83–90, doi: 10.1002/ppp.411.PEPPED1099-1530CrossrefWeb of ScienceGoogle Scholar
  • Brouchkov, A., 2003, Frozen saline soils of the Arctic coast: Their distribution and engineering properties, in M. PhillipsS. M. SpringmanL. U. Arenson, eds, Permafrost: Lisse, Swets & Zeitlinger, 95–100.Google Scholar
  • Brown, J., 1969a, Ionic concentration gradient in permafrost, Barrow, Alaska: U.S. Army Cold Regions Research and Engineering Laboratory, Research report.Google Scholar
  • Brown, J., 1969b, Ionic concentration gradients in permafrost Barrow, Alaska: Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers.Google Scholar
  • Brown, J., P. C. Miller, L. L. Tieszen, and F. L. Bunnell, 1980, An arctic ecosystem: The coastal tundra at Barrow, Alaska: Dowden, Hutchinson, & Ross.CrossrefGoogle Scholar
  • Brown, J., and P. V. Sellmann, 1973, Permafrost and coastal plain history of arctic Alaska, in M. E. Britton, ed., Alaskan Arctic tundra: The Arctic Institute of North America, 31–47.Google Scholar
  • Bryson, M., M. Johnson-Roberson, R. J. Murphy, and D. Bongiorno, 2013, Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes: Plos ONE, 8, 9, doi: 10.1371/journal.pone.0073550.1932-6203CrossrefWeb of ScienceGoogle Scholar
  • Corwin, D. L., and S. M. Lesch, 2005, Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study: Computers and Electronics in Agriculture, 46, 135–152, doi: 10.1016/j.compag.2004.11.003.CEAGE60168-1699CrossrefWeb of ScienceGoogle Scholar
  • Dafflon, B., S. S. Hubbard, J. E. Peterson, and C. Ulrich, 2015, Electrical resistivity tomography, electromagnetic data, mosaic and DSM, and permafrost cores in Barrow, Alaska: Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Data set accessed at, doi: 10.5440/1233229.VZJAABCrossrefGoogle Scholar
  • Dafflon, B., S. S. Hubbard, C. Ulrich, and J. E. Peterson, 2013, Electrical conductivity imaging of active layer and permafrost in an Arctic ecosystem, through advanced inversion of electromagnetic induction data: Vadose Zone Journal, 12, no. 4, doi: 10.2136/vzj2012.0161.VZJAABCrossrefWeb of ScienceGoogle Scholar
  • Dandois, J. P., and E. C. Ellis, 2013, High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision: Remote Sensing of Environment, 136, 259–276, doi: 10.1016/j.rse.2013.04.005.RSEEA70034-4257CrossrefWeb of ScienceGoogle Scholar
  • Dean, W. E., 1974, Determination of carbonate and organic-matter in calcareous sediments and sedimentary-rocks by loss on ignition — Comparison with other methods: Journal of Sedimentary Petrology, 44, 242–248, doi: 10.1306/74D729D2-2B21-11D7-8648000102C1865D.JSEPAK0022-4472CrossrefGoogle Scholar
  • Engstrom, R., A. Hope, H. Kwon, D. Stow, and D. Zamolodchikov, 2005, Spatial distribution of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic coastal plain: Nordic Hydrology, 36, 219–234.NOHYBB0029-1277CrossrefGoogle Scholar
  • Everett, M. E., and M. A. Meju, 2005, Near-surface controlled-source electromagnetic induction: Background and recent advances, in Y. RubinS. S. Hubbard, eds., Hydrogeophysics: Springer, 157–183.CrossrefGoogle Scholar
  • Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, 2003, Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity: Geophysics, 68, 1857–1869, doi: 10.1190/1.1635038.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Fortier, R., M. Allard, and M. K. Seguin, 1994, Effect of physical-properties of frozen ground on electrical-resistivity logging: Cold Regions Science and Technology, 22, 361–384, doi: 10.1016/0165-232X(94)90021-3.CRSTDL0165-232XCrossrefWeb of ScienceGoogle Scholar
  • Fortier, R., A.-M. LeBlanc, M. Allard, S. Buteau, and F. Calmels, 2008, Internal structure and conditions of permafrost mounds at Umiujaq in Nunavik, Canada, inferred from field investigation and electrical resistivity tomography: Canadian Journal of Earth Sciences, 45, 367–387, doi: 10.1139/E08-004.CJESAP0008-4077CrossrefWeb of ScienceGoogle Scholar
  • Friedlingstein, P., P. Cox, R. Betts, Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John, C. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H. D. Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K. G. Schnitzler, R. Schnur, K. Strassmann, A. J. Weaver, C. Yoshikawa, and N. Zeng, 2006, Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison: Journal of Climate, 19, 3337–3353, doi: 10.1175/JCLI3800.1.JLCLEL0894-8755CrossrefWeb of ScienceGoogle Scholar
  • Friedman, S. P., 2005, Soil properties influencing apparent electrical conductivity: A review: Computers and Electronics in Agriculture, 46, 45–70, doi: 10.1016/j.compag.2004.11.001.CEAGE60168-1699CrossrefWeb of ScienceGoogle Scholar
  • Geonics, 2009, EM38-MK2 Ground conductivity meter operating manual.Google Scholar
  • Gilichinsky, D., E. Rivkina, C. Bakermans, V. Shcherbakova, L. Petrovskaya, S. Ozerskaya, N. Ivanushkina, G. Kochkina, K. Laurinavichuis, S. Pecheritsina, R. Fattakhova, and J. M. Tiedje, 2005, Biodiversity of cryopegs in permafrost: FEMS Microbiology Ecology, 53, 117–128, doi: 10.1016/j.femsec.2005.02.003.FMECEZ0168-6496CrossrefWeb of ScienceGoogle Scholar
  • Goswami, S., J. A. Gamon, and C. E. Tweedie, 2011, Surface hydrology of an arctic ecosystem: Multiscale analysis of a flooding and draining experiment using spectral reflectance: Journal of Geophysical Research: Biogeosciences, 116, G00107, doi: 10.1029/2010JG001346.JGRBBS2169-8953CrossrefWeb of ScienceGoogle Scholar
  • Hall, D. L., S. M. Sterner, and R. J. Bodnar, 1988, Freezing-point depression of NaCl-KCl-H2O solutions: Economic Geology, 83, 197–202, doi: 10.2113/gsecongeo.83.1.197.ECGLAL0361-0128CrossrefWeb of ScienceGoogle Scholar
  • Hauck, C., 2002, Frozen ground monitoring using DC resistivity tomography: Geophysical Research Letters, 29, 2016, doi: 10.1029/2002GL014995.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Hayashi, M., 2004, Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion: Environmental Monitoring and Assessment, 96, 119–128, doi: 10.1023/B:EMAS.0000031719.83065.68.EMASDH0167-6369CrossrefWeb of ScienceGoogle Scholar
  • Hayley, K., L. R. Bentley, M. Gharibi, and M. Nightingale, 2007, Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring: Geophysical Research Letters, 34, L18402, doi: 10.1029/2007GL031124.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Hinkel, K. M., J. A. Doolittle, J. G. Bockheim, F. E. Nelson, R. Paetzold, and J. M. Kimble, 2001, Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska: Permafrost and Periglacial Processes, 12, 179–190, doi: 10.1002/ppp.369.PEPPED1099-1530CrossrefWeb of ScienceGoogle Scholar
  • Hinkel, K. M., and F. E. Nelson, 2003, Spatial and temporal patterns of active layer thickness at circumpolar active layer monitoring (CALM) sites in northern Alaska, 1995–2000: Journal of Geophysical Research: Atmospheres, 108, D28168.JGRDE32169-8996, doi: 10.1029/2001JD000927.CrossrefWeb of ScienceGoogle Scholar
  • Hinzman, L. D., N. D. Bettez, W. R. Bolton, F. S. Chapin, M. B. Dyurgerov, C. L. Fastie, B. Griffith, R. D. Hollister, A. Hope, H. P. Huntington, A. M. Jensen, G. J. Jia, O. Jorgenson, D. L. Kane, D. R. Klein, G. Kofinas, A. H. Lynch, A. H. Lloyd, A. David McGuire, F. E. Nelson, W. C. Oechel, T. E. Osterkamp, C. H. Racine, V. E. Romanovsky, R. S. Stone, D. A. Stow, M. Sturm, C. E. Tweedie, G. L. Vourlitis, M. D. Walker, D. A. Walker, P. J. Webber, J. M. Welker, K. S. Winker, and K. Yoshikawa, 2005, Evidence and implications of recent climate change in northern Alaska and other arctic regions: Climatic Change, 72, 251–298, doi: 10.1007/s10584-005-5352-2.CLCHDX0165-0009CrossrefWeb of ScienceGoogle Scholar
  • Hinzman, L. D., D. L. Kane, R. E. Gieck, and K. R. Everett, 1991, Hydrologic and thermal properties of the active layer in the Alaskan Arctic: Cold Regions Science and Technology, 19, 95–110, doi: 10.1016/0165-232X(91)90001-W.CRSTDL0165-232XCrossrefWeb of ScienceGoogle Scholar
  • Hivon, E. G., and D. C. Sego, 1993, Distribution of saline permafrost in the Northwest-Territories, Canada: Canadian Geotechnical Journal, 30, 506–514, doi: 10.1139/t93-043.CGJOAH1208-6010CrossrefWeb of ScienceGoogle Scholar
  • Hivon, E. G., and D. C. Sego, 1995, Strength of frozen saline soils: Canadian Geotechnical Journal, 32, 336–354, doi: 10.1139/t95-034.CGJOAH1208-6010CrossrefWeb of ScienceGoogle Scholar
  • Hubbard, S. S., C. Gangodagamage, B. Dafflon, H. Wainwright, J. Peterson, A. Gusmeroli, C. Ulrich, Y. Wu, C. Wilson, J. Rowland, C. Tweedie, and S. D. Wullschleger, 2013, Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets: Hydrogeology Journal, 21, 149–169, doi: 10.1007/s10040-012-0939-y.HJYOAW1431-2174CrossrefWeb of ScienceGoogle Scholar
  • Hugelius, G., J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C.-L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O'Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry, 2014, Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps: Biogeosciences, 11, 6573–6593.BIOGGR1726-4189, doi: 10.5194/bg-11-6573-2014.CrossrefWeb of ScienceGoogle Scholar
  • James, M. R., and S. Robson, 2012, Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application: Journal of Geophysical Research: Earth Surface, 117, F03017, doi: 10.1029/2011JF002289.JGREB32169-9011CrossrefWeb of ScienceGoogle Scholar
  • Johnson, T. C., L. D. Slater, D. Ntarlagiannis, F. D. Day-Lewis, and M. Elwaseif, 2012, Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes: Water Resources Research, 48W07506, doi: 10.1029/2012WR011893.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Jorgenson, M. T., 2011, Coastal region of northern Alaska: Guidebook to permafrost and related features: Department of Natural Resources.CrossrefGoogle Scholar
  • Jorgenson, M. T., V. Romanovsky, J. Harden, Y. Shur, J. O’Donnell, T. Schuur, and M. Kanevskiy, 2010, Resilience and vulnerability of permafrost to climate change: Canadian Journal of Forest Research, 40, 1219–1236.CJFRAR0045-5067, doi: 10.1139/X10-060.CrossrefWeb of ScienceGoogle Scholar
  • Kanevskiy, M., Y. Shur, M. T. Jorgenson, C. Ping, G. J. Michaelson, D. Fortier, E. Stephani, M. Dillon, and V. Tumskoy, 2013, Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska: Cold Regions Science and Technology, 85, 56–70, doi: 10.1016/j.coldregions.2012.08.002.CRSTDL0165-232XCrossrefWeb of ScienceGoogle Scholar
  • Karaoulis, M., A. Revil, D. D. Werkema, B. J. Minsley, W. F. Woodruff, and A. Kemna, 2011, Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach: Geophysical Journal International, 187, 237–251, doi: 10.1111/j.1365-246X.2011.05156.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Keller, G. V., and F. C. Frischknecht, 1966, Electrical methods in geophysical prospecting: Pergamon Press Inc..Google Scholar
  • Kemna, A., 2000, Tomographic inversion of complex resistivity — Theory and application: Ph.D. thesis, Bochum Ruhr University.Google Scholar
  • Kokelj, S. V., T. C. Lantz, S. A. Wolfe, J. C. Kanigan, P. D. Morse, R. Coutts, N. Molina-Giraldo, and C. R. Burn, 2014, Distribution and activity of ice wedges across the forest-tundra transition, western Arctic Canada: Journal of Geophysical Research: Earth Surface, 119, 2032–2047, doi: 10.1002/2014JF003085.JGREB32169-9011CrossrefWeb of ScienceGoogle Scholar
  • Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2011, Permafrost carbon-climate feedbacks accelerate global warming: Proceedings of the National Academy of Sciences of the United States of America, 108, 14769–14774, doi: 10.1073/pnas.1103910108.1091-6490CrossrefWeb of ScienceGoogle Scholar
  • Krautblatter, M., S. Verleysdonk, A. Flores-Orozco, and A. Kemna, 2010, Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps): Journal of Geophysical Research: Earth Surface, 115, F02003.JGREB32169-9011, doi: 10.1029/2008JF001209.CrossrefWeb of ScienceGoogle Scholar
  • LaBrecque, D. J., M. Miletto, W. Daily, A. Ramirez, and E. Owen, 1996, The effects of noise on Occam’s inversion of resistivity tomography data: Geophysics, 61, 538–548, doi: 10.1190/1.1443980.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lachenbruch, A. H., 1962, Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost: GSA Special Papers, 70, 1–66, doi: 10.1130/SPE70-p1.CrossrefGoogle Scholar
  • Leffingwell, E., 1915, Ground-ice wedges, the dominant form of ground-ice on the north coast of Alaska: Journal of Geology, 23, 635–654, doi: 10.1086/622281.JGEOAZ0022-1376CrossrefGoogle Scholar
  • Mackay, J. R., 2000, Thermally induced movements in ice-wedge polygons, western Arctic coast: A long-term study: Geographie Physique Et Quaternaire, 54, 41–68, doi: 10.7202/004846ar.GPHQEM0705-7199CrossrefGoogle Scholar
  • Maidment, D. R., 1993, Handbook of hydrology: McGraw-Hill.Google Scholar
  • McCleskey, R. B., D. K. Nordstrom, J. N. Ryan, and J. W. Ball, 2012, A new method of calculating electrical conductivity with applications to natural waters: Geochimica et Cosmochimica Acta, 77, 369–382, doi: 10.1016/j.gca.2011.10.031.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • McGinnis, L. D., D. K. Nakao, and C. C. Clark, 1973, Geophysical identification of frozen and unfrozen ground, Antarctica: Proceedings of the 2nd International Conference on Permafrost, National Academy of Sciences, 136–146.Google Scholar
  • McNeill, J. D., 1980, Electromagnetic terrain conductivity measurement at low induction numbers, Geonics, Technical NoteTN-6.Google Scholar
  • McNeill, J. D., 1990, Use of electromagnetic methods for groundwater studies, in S. Ward, ed., Geotechnical and environmental geophysics, vol.  1: SEG, 191–218.AbstractGoogle Scholar
  • Meyer, H., L. Schirrmeister, A. Andreev, D. Wagner, H.-W. Hubberten, K. Yoshikawa, A. Bobrov, S. Wetterich, T. Opel, E. Kandiano, and J. Brown, 2010, Late glacial and Holocene isotopic and environmental history of northern coastal Alaska — Results from a buried ice-wedge system at Barrow: Quaternary Science Reviews, 29, 3720–3735, doi: 10.1016/j.quascirev.2010.08.005.QSREDU0277-3791CrossrefWeb of ScienceGoogle Scholar
  • Michaelson, G. J., C. L. Ping, and M. T. Jorgenson, 2011, Methane and carbon dioxide content in eroding permafrost soils along the Beaufort Sea coast, Alaska: Journal of Geophysical Research: Biogeosciences, 116, G01022, doi: 10.1029/2010JG001387.JGRBBS2169-8953CrossrefWeb of ScienceGoogle Scholar
  • Nicolsky, D. J., V. E. Romanovsky, N. N. Romanovskii, A. L. Kholodov, N. E. Shakhova, and I. P. Semiletov, 2012, Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region: Journal of Geophysical Research: Earth Surface, 117, F03028, doi: 10.1029/2012JF002358.JGREB32169-9011CrossrefWeb of ScienceGoogle Scholar
  • Nicolsky, D., and N. Shakhova, 2010, Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Dmitry Laptev Strait: Environmental Research Letters, 5, 015006, doi: 10.1088/1748-9326/5/1/015006.ERLNAL1748-9326CrossrefWeb of ScienceGoogle Scholar
  • O’Sullivan, J., 1966, Geochemistry of permafrost, Barrow, Alaska: Proceedings of International Conference on Permafrost, National Academy of Sciences, 1287, 30–37.Google Scholar
  • Overduin, P. P., S. Westermann, K. Yoshikawa, T. Haberlau, V. Romanovsky, and S. Wetterich, 2012, Geoelectric observations of the degradation of nearshore submarine permafrost at Barrow (Alaskan Beaufort Sea): Journal of Geophysical Research: Earth Surface, 117, F02004.JGREB32169-9011, doi: 10.1029/2011JF002088.CrossrefWeb of ScienceGoogle Scholar
  • Pecheritsyna, S. A., V. A. Shcherbakova, A. L. Kholodov, V. N. Akimov, T. N. Abashina, N. E. Suzina, and E. M. Rivkina, 2007, Microbiological analysis of cryopegs from the Varandei Peninsula, Barents Sea: Microbiology, 76, 614–620, doi: 10.1134/S0026261707050153.MIBLAO0026-2617CrossrefWeb of ScienceGoogle Scholar
  • Ping, C.-L., G. J. Michaelson, M. T. Jorgenson, J. M. Kimble, H. Epstein, V. E. Romanovsky, and D. A. Walker, 2008, High stocks of soil organic carbon in the North American Arctic region: Nature Geoscience, 1, 615–619, doi: 10.1038/ngeo284.1752-0894CrossrefWeb of ScienceGoogle Scholar
  • Potter, R. W., M. A. Clynne, and D. L. Brown, 1978, Freezing-point depression of aqueous sodium-chloride solutions: Economic Geology, 73, 284–285, doi: 10.2113/gsecongeo.73.2.284.ECGLAL0361-0128CrossrefWeb of ScienceGoogle Scholar
  • Pullman, E. R., M. T. Jorgenson, and Y. Shur, 2007, Thaw settlement in soils of the Arctic Coastal Plain, Alaska: Arctic Antarctic and Alpine Research, 39, 468–476.CrossrefWeb of ScienceGoogle Scholar
  • Quinn, N. W. T., R. Ortega, P. J. A. Rahilly, and C. W. Royer, 2010, Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management: Environmental Modelling & Software, 25, 1045–1058, doi: 10.1016/j.envsoft.2009.10.011.EMSOFT1364-8152CrossrefWeb of ScienceGoogle Scholar
  • Revil, A., L. M. Cathles, S. Losh, and J. A. Nunn, 1998, Electrical conductivity in shaly sands with geophysical applications: Journal of Geophysical Research: Solid Earth, 103, 23925–23936.JGEREE2169-9356, doi: 10.1029/98JB02125.CrossrefWeb of ScienceGoogle Scholar
  • Romanovsky, V. E., and T. E. Osterkamp, 2000, Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost: Permafrost and Periglacial Processes, 11, 219–239, doi: 10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7.PEPPED1099-1530CrossrefWeb of ScienceGoogle Scholar
  • Romanovsky, V. E., and T. E. Osterkamp, 2001, Permafrost: Changes and impacts, in R. PaepeV. MelnikovE. Van OverloopV. Gorokhov, eds., Permafrost response on economic development, environmental security and natural resources: Springer, NATO Science Series 76 , 297–315.CrossrefGoogle Scholar
  • Schaefer, K., H. Lantuit, V. E. Romanovsky, and S. E. A. G., 2012, Policy implications of warming permafrost: United Nations Environment Programme, Special report.Google Scholar
  • Schaphoff, S., U. Heyder, S. Ostberg, D. Gerten, J. Heinke, and W. Lucht, 2013, Contribution of permafrost soils to the global carbon budget: Environmental Research Letters, 8, 014026, doi: 10.1088/1748-9326/8/1/014026.ERLNAL1748-9326CrossrefWeb of ScienceGoogle Scholar
  • Sellmann, P. V., J. Brown, R. I. Lewellen, H. McKim, and C. Merry, 1975, The classification and geomorphic implication of thaw lakes on the Arctic coastal plain: U.S. Army CRREL, Research report 344.CrossrefGoogle Scholar
  • Shcherbakova, V. A., N. A. Chuvilskaya, E. M. Rivkina, S. A. Pecheritsyna, K. S. Laurinavichius, and N. E. Suzina, 2005, Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: Description Clostridium algoriphilum sp. nov.: Extremophiles, 9, 239–246.69QCEPCrossrefWeb of ScienceGoogle Scholar
  • Shcherbakova, V. A., N. A. Chuvil’skaya, E. M. Rivkina, S. A. Pecheritsyna, S. V. Suetin, K. S. Laurinavichius, A. M. Lysenko, and D. A. Gilichinsky, 2009, Novel halotolerant bacterium from cryopeg in permafrost: Description of Psychrobacter muriicola sp. nov.: Microbiology, 78, 84–91, doi: 10.1134/S0026261709010111.MIBLAO0026-2617CrossrefWeb of ScienceGoogle Scholar
  • Shiklomanov, N. I., D. A. Streletskiy, F. E. Nelson, R. D. Hollister, V. E. Romanovsky, C. E. Tweedie, J. G. Bockheim, and J. Brown, 2010, Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska: Journal of Geophysical Research: Biogeosciences, 115, G00I04, doi: 10.1029/2009JG001248.JGRBBS2169-8953CrossrefWeb of ScienceGoogle Scholar
  • Smith, M. J., J. Chandler, and J. Rose, 2009, High spatial resolution data acquisition for the geosciences: Kite aerial photography: Earth Surface Processes and Landforms, 34, 155–161, doi: 10.1002/esp.1702.ESPLDB0197-9337CrossrefWeb of ScienceGoogle Scholar
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, 2009, Soil organic carbon pools in the northern circumpolar permafrost region: Global Biogeochemical Cycles, 23, GB2023.GBCYEP1944-9224, doi: 10.1029/2008GB003327.CrossrefWeb of ScienceGoogle Scholar
  • Velli, Y. Y., and P. A. Grishin, 1983, On the functional dependence of the freezing point of soils on the composition of water soluble salts in an interstitial solution, in Rheology of soils and engineering geocryology (translated from Russian), Canada Institute for Scientific and Technical Information, National Research Council of Canada, 193–196.Google Scholar
  • Visconti, F., J. M. de Paz, and J. L. Rubio, 2010, An empirical equation to calculate soil solution electrical conductivity at 25 degrees C from major ion concentrations: European Journal of Soil Science, 61, 980–993, doi: 10.1111/j.1365-2389.2010.01284.x.ESOSES1351-0754CrossrefWeb of ScienceGoogle Scholar
  • Washburn, A. L., 1979, Geocryology: Edward Arnold.Google Scholar
  • Washburn, A. L., 1980, Permafrost features as evidence of climate-change: Earth-Science Reviews, 15, 327–402, doi: 10.1016/0012-8252(80)90114-2.ESREAV0012-8252CrossrefWeb of ScienceGoogle Scholar
  • Williams, J. R., 1970, Ground water in the permafrost regions of Alaska : Ground water in permafrost regions in Alaska occurs according to the same geologic and hydrologic principles prevailing in temperate regions: U.S. Survey.CrossrefGoogle Scholar
  • Wu, Y., S. S. Hubbard, C. Ulrich, and S. D. Wullschleger, 2013, Remote monitoring of freeze-thaw transitions in arctic soils using the complex resistivity method: Vadose Zone Journal, 12, no. 1, doi: 10.2136/vzj2012.0062.VZJAABCrossrefWeb of ScienceGoogle Scholar
  • Yoshikawa, K., C. Leuschen, A. Ikeda, K. Harada, P. Gogineni, P. Hoekstra, L. Hinzman, Y. Sawada, and N. Matsuoka, 2006, Comparison of geophysical investigations for detection of massive ground ice (pingo ice): Journal of Geophysical Research: Planets, 111, E06S19, doi: 10.1029/2005JE002573.JGPLEH2169-9100CrossrefWeb of ScienceGoogle Scholar
  • Yoshikawa, K., V. Romanovsky, N. Duxbury, J. Brown, and A. Tsapin, 2004, The use of geophysical methods to discriminate between brine layers and freshwater taliks in permafrost regions: Journal of Glaciology and Geocryology, 26, 301–309.Google Scholar