This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

On Tuesday, 28 May 2024, from 1:00 am CDT to 1:00 pm CDT, the SEG Library will undergo a major site upgrade. During this time, users will be able to access their accounts, but certain features may be unavailable. We apologize for the inconvenience.

Pore size distributions in rocks may be represented by fractal scaling, and fractal descriptions of pore systems may be used for prediction of petrophysical properties such as permeability, tortuosity, diffusivity, and electrical conductivity. Transverse relaxation time (T2) distributions determined by nuclear magnetic resonance (NMR) measurements may be used to determine the fractal scaling of the pore system, but the analysis is complicated when internal magnetic field gradients at the pore scale are sufficiently large. Through computations in ideal porous media and laboratory measurements of glass beads and sediment samples, we found that the effect of internal magnetic field gradients was most pronounced in rocks with larger pores and a high magnetic susceptibility contrast between the pore fluid and mineral grains. We quantified this behavior in terms of pore size and Carr-Purcell-Meiboom-Gill (CPMG) half-echo spacing through scaling arguments. We additionally found that the effects of internal field gradients may be mitigated in the laboratory by performing T2 measurements with different CPMG half-echo spacings and fitting the apparent fractal dimensions determined by the NMR measurements with a model to determine the true pore system fractal dimension.


  • Appel, M., J. J. Freedman, R. B. Perkins, and J. P. Hofman, 1999, Restricted diffusion and internal field gradients: Presented at 40th Annual Logging Symposium, SPWLA, Paper FF.Google Scholar
  • Asquith, G. B., and A. D. Jacka, 1992, Petrophysics of bimodal porosity: Lower Cretaceous Rodessa limestone, Running Duke field, Houston County, Texas: Gulf Coast Association of Geological Societies Transactions, 42, 1–12, doi: 10.1306/d9cb4d0f-1715-11d7-8645000102c1865d.TGCGA90533-6562CrossrefGoogle Scholar
  • Audoly, B., P. N. Sen, S. Ryu, and Y. Song, 2003, Correlation functions for inhomogeneous magnetic field in random media with application to a dense random pack of spheres: Journal of Magnetic Resonance, 164, 154–159, doi: 10.1016/S1090-7807(03)00179-4.JMARF31090-7807CrossrefWeb of ScienceGoogle Scholar
  • Bird, N., M. C. Díaz, A. Saa, and A. M. Tarquis, 2006, Fractal and multifractal analysis of pore-scale images of soil: Journal of Hydrology, 322, 211–219, doi: 10.1016/j.jhydrol.2005.02.039.JHYDA70022-1694CrossrefWeb of ScienceGoogle Scholar
  • Bird, N. R. A., F. Bartoli, and A. R. Dexter, 1996, Water retention models for fractal soil structures: European Journal of Soil Science, 47, 1–6, doi: 10.1111/j.1365-2389.1996.tb01365.x.ESOSES1351-0754CrossrefWeb of ScienceGoogle Scholar
  • Bloch, F., 1946, Nuclear induction: Physical Review, 70, 460–474, doi: 10.1103/PhysRev.70.460.PHRVAO0031-899XCrossrefWeb of ScienceGoogle Scholar
  • Bloembergen, N., E. M. Purcell, and R. V. Pound, 1948, Relaxation effects in nuclear magnetic resonance absorption: Physical Review, 73, 679–712, doi: 10.1103/PhysRev.73.679.PHRVAO0031-899XCrossrefWeb of ScienceGoogle Scholar
  • Brooks, R. H., and A. T. Corey, 1964, Hydraulic properties of porous media: Hydrology paper 3: Colorado State University.Google Scholar
  • Brownstein, K. R., and C. E. Tarr, 1979, Importance of classical diffusion in NMR studies of water in biological cells: Physical Review A, 19, 2446–2453, doi: 10.1103/physreva.19.2446.PRVAAH0096-8250CrossrefWeb of ScienceGoogle Scholar
  • Carr, H. Y., and E. M. Purcell, 1954, Effects of diffusion in free precession in nuclear magnetic resonance experiments: Physical Review, 94, 630–638, doi: 10.1103/PhysRev.94.630.PHRVAO0031-899XCrossrefWeb of ScienceGoogle Scholar
  • Caruso, L., G. Simmons, and R. Wilkens, 1985, The physical properties of a set of sandstones — Part I. The samples: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 381–392, doi: 10.1016/0148-9062(85)90003-8.CrossrefWeb of ScienceGoogle Scholar
  • Coates, G. R., L. Xiao, and M. G. Prammer, 1999, NMR logging principles and applications: Halliburton.Google Scholar
  • Crawford, J. W., N. Matsui, and I. M. Young, 1995, The relation between the moisture-release curve and the structure of soil: European Journal of Soil Science, 46, 369–375, doi: 10.1111/j.1365-2389.1995.tb01333.x.ESOSES1351-0754CrossrefWeb of ScienceGoogle Scholar
  • Daigle, H., and B. Dugan, 2014, Data report: permeability, consolidation, stress state, and pore system characteristics of sediments from sites C0011, C0012, and C0018 of the Nankai Trough: Proceedings of the Integrated Ocean Drilling Program, 333, 1–23, doi: 10.2204/iodp.proc.333.201.2014.CrossrefGoogle Scholar
  • Daigle, H., B. Thomas, H. Rowe, and M. Nieto, 2014, Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333: Journal of Geophysical Research Solid Earth, 119, 2631–2650, doi: 10.1002/2013JB010784.JGEREE0148-0227CrossrefWeb of ScienceGoogle Scholar
  • Dunn, K.-J., D. J. Bergman, and G. A. Latorraca, 2002, Nuclear magnetic resonance petrophysical and logging applications: Elsevier.Google Scholar
  • Gallegos, D. P., and D. M. Smith, 1988, A NMR technique for the analysis of pore structure: Determination of continuous pore size distributions: Journal of Colloid and Interface Science, 122, 143–153, doi: 10.1016/0021-9797(88)90297-4.JCISA50021-9797CrossrefWeb of ScienceGoogle Scholar
  • Ghanbarian, B., A. G. Hunt, M. Sahimi, R. P. Ewing, and T. E. Skinner, 2013, Percolation theory generates a physically based description of tortuosity in saturated and unsaturated porous media: Soil Science Society of America Journal, 77, 1920–1929, doi: 10.2136/sssaj2013.01.0089.SSSJD41435-0661CrossrefWeb of ScienceGoogle Scholar
  • Ghanbarian-Alavijeh, B., H. Millán, and G. Huang, 2011, A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve: Canadian Journal of Soil Science, 91, 1–14, doi: 10.4141/cjss10008.CJSSAR0008-4271CrossrefWeb of ScienceGoogle Scholar
  • Glasel, J. A., and K. H. Lee, 1974, On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems: Journal of the American Chemical Society, 96, 970–978, doi: 10.1021/ja00811a003.JACSAT0002-7863CrossrefWeb of ScienceGoogle Scholar
  • Johnson, A., and H. Daigle, 2014, Pore system characterization using NMR and micro-CT images: Presented at 6th International Conference on Porous Media, International Society for Porous Media.Google Scholar
  • Katz, A. J., and A. H. Thompson, 1985, Fractal sandstone pores: Implications for conductivity and pore formation: Physical Review Letters, 54, 1325–1328, doi: 10.1103/PhysRevLett.54.1325.PRLTAO0031-9007CrossrefWeb of ScienceGoogle Scholar
  • Keith, B. D., and E. D. Pittman, 1983, Bimodal porosity in oolitic reservoir — Effect on productivity and log response, Rodessa limestone (Lower Cretaceous), East Texas Basin: AAPG Bulletin, 67, 1391–1399, doi: 10.1306/03b5ba2e-16d1-11d7-8645000102c1865d.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Kenyon, W. E., P. I. Day, C. Straley, and J. F. Willemsen, 1988, A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones: SPE Formation Evaluation, 3, 622–636, doi: 10.2118/15643-PA.SFEVEG0885-923XCrossrefGoogle Scholar
  • Kleinberg, R. L., 1999, Nuclear magnetic resonance, in Wong, P.-Z., ed., Methods in the physics of porous media: Academic Press, 337–385.CrossrefGoogle Scholar
  • Kleinberg, R. L., S. A. Farooqui, and M. A. Horsfield, 1993, T1/T2 ratio and frequency dependence of NMR relaxation in porous sedimentary rocks: Journal of Colloid and Interface Science, 158, 195–198, doi: 10.1006/jcis.1993.1247.JCISA50021-9797CrossrefWeb of ScienceGoogle Scholar
  • Kleinberg, R. L., and M. A. Horsfield, 1990, Transverse relaxation processes in porous sedimentary rock: Journal of Magnetic Resonance, 88, 9–19, doi: 10.1016/0022-2364(90)90104-h.JMARF31090-7807CrossrefWeb of ScienceGoogle Scholar
  • Kleinberg, R. L., W. E. Kenyon, and P. P. Mitra, 1994, Mechanism of NMR relaxation of fluids in rock: Journal of Magnetic Resonance Series A, 108, 206–214, doi: 10.1006/jmra.1994.1112.JMRAE21064-1858CrossrefGoogle Scholar
  • Korb, J.-P., M. Whaley-Hodges, and R. G. Bryant, 1997, Translational diffusion of liquids at surfaces of microporous materials: Theoretical analysis of field-cycling magnetic relaxation measurements: Physical Review E, 56, 1934–1945, doi: 10.1103/PhysRevE.56.1934.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Latour, L. L., R. L. Kleinberg, and A. Sezginer, 1992, Nuclear magnetic resonance properties of rocks at elevated temperatures: Journal of Colloid and Interface Science, 150, 535–548, doi: 10.1016/0021-9797(92)90222-8.JCISA50021-9797CrossrefWeb of ScienceGoogle Scholar
  • Mandelbrot, B., 1983, The fractal geometry of nature: Freeman.CrossrefGoogle Scholar
  • Neuman, C. H., 1974, Spin echo of spins diffusing in a bounded medium: Journal of Chemical Physics, 60, 4508–4511, doi: 10.1063/1.1680931.JCPSA60021-9606CrossrefWeb of ScienceGoogle Scholar
  • Pape, H., C. Clauser, and J. Iffland, 1999, Permeability prediction based on fractal pore-space geometry: Geophysics, 64, 1447–1460, doi: 10.1190/1.1444649.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pepper, J. F., W. de Witt, and D. F. Demarest, 1954, Geology of the Bedford shale and Berea sandstone in the Appalachian basin, Geological Survey Professional Paper 259: U.S. Government Printing Office.CrossrefGoogle Scholar
  • Perfect, E., 1999, Estimating soil mass fractal dimensions from water retention curves: Geoderma, 88, 221–231, doi: 10.1016/S0016-7061(98)00128-1.GEDMAB0016-7061CrossrefWeb of ScienceGoogle Scholar
  • Perrier, E., M. Rieu, G. Sposito, and G. de Marsily, 1996, Models of the water retention curve for soils with a fractal pore size distribution: Water Resources Research, 32, 3025–3031, doi: 10.1029/96WR01779.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Pfeifer, H., 1972, Nuclear magnetic resonance and relaxation of molecules adsorbed on solids, in Diehl, P.E. FluckR. Kosfeld, eds., Nuclear magnetic resonance basic principles and progress: Springer, 7, 55–153.CrossrefGoogle Scholar
  • Rieu, M., and E. Perrier, 1997, Fractal models of fragmented and aggregated soils, in Baveye, P.J.-Y. ParlangeB. Stewart, eds., Fractals in soil science: CRC Press, 169–201.Google Scholar
  • Rieu, M., and G. Sposito, 1991, Fractal fragmentation, soil porosity, and soil water properties: I. Theory: Soil Science Society of America Journal, 55, 1231–1238, doi: 10.2136/sssaj1991.03615995005500050006x.SSSJD41435-0661CrossrefWeb of ScienceGoogle Scholar
  • Shafer, J. L., D. Mardon, and J. Gardner, 1999, Diffusion effects on NMR response of oil & water in rock: Impact of internal gradients: Presented at 16th Symposium, Society of Core Analysts, Paper no. 9916.Google Scholar
  • Stanley, H. E., 1984, Application of fractal concepts to polymer statistics and to anomalous transport in randomly porous media: Journal of Statistical Physics, 36, 843–860, doi: 10.1007/BF01012944.JSTPSB0022-4715CrossrefWeb of ScienceGoogle Scholar
  • Stonard, S. W., G. A. LaTorraca, and K.-J. Dunn, 1996, Effects of magnetic susceptibility contrasts on oil and water saturation determinations by NMR T2 laboratory and well log measurements: Presented at 13th Symposium, Society of Core Analysts, Paper no. 9619.Google Scholar
  • Torrey, H. C., 1956, Bloch equations with diffusion terms: Physical Review, 104, 563–565, doi: 10.1103/PhysRev.104.563.PHRVAO0031-899XCrossrefWeb of ScienceGoogle Scholar
  • Tyler, S. W., and S. W. Wheatcraft, 1990, Fractal processes in soil water retention: Water Resources Research, 26, 1047–1054, doi: 10.1029/WR026i005p01047.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Zhang, Q., 2001, NMR formation evaluation: Hydrogen index, wettability and internal field gradients: Ph.D. thesis, Rice University.Google Scholar