ABSTRACT
Crosshole resistivity tomography has received consideration as a tool for quantitative imaging of carbon dioxide stored in deep saline aquifers. With regard to the monitoring responsibility of site operators and the substantial expenses associated with permanent downhole installations, optimized experimental design gains particular importance. Based on an iterative appraisal of the formal model resolution matrix, we developed a method to estimate optimum electrode locations along the borehole trajectories with the objective to maximize the imaging capability within a prescribed target horizon. For the presented crosshole case, these layouts were found to be symmetric, exhibiting refined electrode spacings within the target horizon. Our results revealed that a sparse but well conceived set of electrodes can provide a large part of the information content offered by comparably dense electrode distributions. In addition, the optimized layout outperformed equidistant setups with the same number of electrodes because its resolution was focused on the monitoring target. The optimized electrode layouts presented provided a powerful and cost-efficient opportunity to complement permanent installations, particularly at, but not limited to, future storage sites. Although preliminarily developed to support the design of crosshole resistivity layouts, our approach is directly applicable to other survey geometries including surface and surface-to-hole acquisitions.
REFERENCES
- 2012, Parameter estimation and inverse problems, 2nd ed.: Academic Press. ,
- 2012, Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany: Geophysics, 77, no. 6,
B253–B267 , doi:10.1190/geo2011-0515.1 .GPYSA7 0016-8033 , - 2000, Cross-hole resistivity tomography using different electrode configurations: Geophysical Prospecting, 48,
887–912 , doi:10.1046/j.1365-2478.2000.00220.x .GPPRAR 0016-8025 , - 2005,
DC resistivity and induced polarization methods , in Rubin, Y.S. S. Hubbard, eds., Hydrogeophysics: Springer,Water Science and Technology Library Series , vol. 50,129–156 . , - 2011, Geoelectric experimental design — Efficient acquisition and exploitation of complete pole-bipole data sets: Geophysics, 76, no. 1,
F15–F26 , doi:10.1190/1.3511350 .GPYSA7 0016-8033 , - 2003, Measures of resolution in global body wave tomography: Geophysical Research Letters, 30,
1978 , doi:10.1029/2003GL018222 .GPRLAJ 0094-8276 , - 2012, Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration: International Journal of Greenhouse Gas Control, 9,
484–494 , doi:10.1016/j.ijggc.2012.04.009 .IJGGBW 1750-5836 , - 2013, Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs: International Journal of Greenhouse Gas Control, 18,
401–408 , doi:10.1016/j.ijggc.2013.04.016 .IJGGBW 1750-5836 , - 2006, Monitoring CO2 injection with cross-hole electrical resistivity tomography: Exploration Geophysics, 37,
44–49 , doi:10.1071/EG06044 . , - 2008, Experimental design for crosshole electrical resistivity tomography data sets: Presented at
Near Surface — 14th European Meeting of Environmental and Engineering Geophysics , Extended Abstracts,B23 . , - 1992, Electrical resistivity tomography of vadose water movement: Water Resources Research, 28,
1429–1442 , doi:10.1029/91WR03087 .WRERAQ 0043-1397 , - 2013, Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments: Geophysics, 78, no. 2,
E79–E94 , doi:10.1190/geo2012-0088.1 .GPYSA7 0016-8033 , - 2003, Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach: Geophysical Journal International, 153,
305–316 , doi:10.1046/j.1365-246X.2003.01890.x .GJINEA 0956-540X , - 2007, Spatial focusing of geoelectrical resistivity surveys considering geologic and hydrologic layering: Geophysics, 72, no. 2,
F65–F73 , doi:10.1190/1.2433737 .GPYSA7 0016-8033 , - 2006, Three-dimensional modelling and inversion of DC resistivity data incorporating topography — Part II: Inversion: Geophysical Journal International, 166,
506–517 , doi:10.1111/j.1365-246X.2006.03011.x .GJINEA 0956-540X , - 2000, Tomographic inversion of complex resistivity: Theory and application: Ph.D. thesis, Ruhr-Universität Bochum. ,
- 2010, Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany): International Journal of Greenhouse Gas Control, 4,
816–826 , doi:10.1016/j.ijggc.2010.05.001 .IJGGBW 1750-5836 , - 2013,
Operational reservoir monitoring at the CO2 pilot storage site Ketzin, Germany , in Hou, M. Z.H. XieP. Were, eds., Clean energy systems in the subsurface: Production, storage and conversion: Springer,Springer Series in Geomechanics and Geoengineering ,53–63 . , - 2011, Experimental evaluation of the impact of the interactions of CO2-SO2, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany: Geochemistry, Geophysics, Geosystems, 12,
Q05010 , doi:10.1029/2010GC003469 .GGGGFR 1525-2027 , - 2010, Fast computation of optimized electrode arrays for 2D resistivity surveys: Computers & Geosciences, 36,
1414–1426 , doi:10.1016/j.cageo.2010.03.016 .CGEODT 0098-3004 , - 2014, Optimized arrays for 2D cross-borehole electrical tomography surveys: Geophysical Prospecting, 62,
172–189 , doi:10.1111/1365-2478.12072 .GPPRAR 0016-8025 , - 2012, Europe’s longest-operating onshore CO2 storage site at Ketzin, Germany: A progress report after three years of injection: Environmental Earth Sciences, 67,
323–334 , doi:10.1007/s12665-012-1672-5 .EESNCZ 1866-6280 , - 2010, Recent advances in optimized geophysical survey design: Geophysics, 75, no. 5,
A177–A194 , doi:10.1190/1.3484194 .GPYSA7 0016-8033 , - 2006, Outer-space sensitivities in geoelectrical tomography: Geophysics, 71, no. 3,
G93–G96 , doi:10.1190/1.2194891 .GPYSA7 0016-8033 , - 2010, Lithological and petrophysical core-log interpretation in CO2SINK, the European CO2 onshore research storage and verification project: SPE Reservoir Evaluation & Engineering, 13,
179–192 , doi:10.2118/115247-PA .SREEFG 1094-6470 , - 2009, The point-spread function measure of resolution for the 3D electrical resistivity experiment: Geophysical Journal International, 176,
405–414 , doi:10.1111/j.1365-246X.2008.04003.x .GJINEA 0956-540X , - 2012, A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results: Journal of Applied Geophysics, 79,
6–16 , doi:10.1016/j.jappgeo.2011.12.011 .JAGPEA 0926-9851 , - 2003, Monitoring carbon dioxide sequestration using electrical resistance tomography (ERT): Sensitivity studies: Journal of Environmental and Engineering Geophysics, 8,
187–208 , doi:10.4133/JEEG8.3.187 .1083-1363 , - 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography — Part I: Modelling: Geophysical Journal International, 166,
495–505 , doi:10.1111/j.1365-246X.2006.03010.x .GJINEA 0956-540X , - 2012, A modular geoelectrical monitoring system as part of the surveillance concept in CO2 storage projects: Energy Procedia, 23,
400–407 , doi:10.1016/j.egypro.2012.06.062 .EPNRCV 1876-6102 , - 2000, Cross-hole electrical imaging of a controlled saline tracer injection: Journal of Applied Geophysics, 44,
85–102 , doi:10.1016/S0926-9851(00)00002-1 .JAGPEA 0926-9851 , - 2006, Global seismic tomography and modern parallel computers: Annals of Geophysics, 49,
977–986 , doi:10.4401/ag-4407 .1593-5213 , - 2004, Experimental design: Electrical resistivity data sets that provide optimum subsurface information: Geophysics, 69,
120–139 , doi:10.1190/1.1649381 .GPYSA7 0016-8033 , - 2013, AUGEM: Automatically generate high performance dense linear algebra kernels on x86 CPUs: Presented at
ACM International Conference on High Performance Computing, Networking, Storage and Analysis ,25:1–25:12 . , - 2012, Practical aspects of applied optimized survey design for electrical resistivity tomography: Geophysical Journal International, 189,
428–440 , doi:10.1111/j.1365-246X.2012.05372.x .GJINEA 0956-540X , - 2006, Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations: Geophysical Journal International, 167,
1119–1126 , doi:10.1111/j.1365-246X.2006.03196.x .GJINEA 0956-540X , - 2010, High-resolution electrical resistivity tomography monitoring of a tracer test in a conned aquifer: Journal of Applied Geophysics, 70,
268–276 , doi:10.1016/j.jappgeo.2009.08.001 .JAGPEA 0926-9851 , - 1993, On the completeness of data sets with multielectrode systems for electrical resistivity surveys: Geophysical Prospecting, 41,
791–801 , doi:10.1111/j.1365-2478.1993.tb00885.x .GPPRAR 0016-8025 ,