This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Crosshole resistivity tomography has received consideration as a tool for quantitative imaging of carbon dioxide stored in deep saline aquifers. With regard to the monitoring responsibility of site operators and the substantial expenses associated with permanent downhole installations, optimized experimental design gains particular importance. Based on an iterative appraisal of the formal model resolution matrix, we developed a method to estimate optimum electrode locations along the borehole trajectories with the objective to maximize the imaging capability within a prescribed target horizon. For the presented crosshole case, these layouts were found to be symmetric, exhibiting refined electrode spacings within the target horizon. Our results revealed that a sparse but well conceived set of electrodes can provide a large part of the information content offered by comparably dense electrode distributions. In addition, the optimized layout outperformed equidistant setups with the same number of electrodes because its resolution was focused on the monitoring target. The optimized electrode layouts presented provided a powerful and cost-efficient opportunity to complement permanent installations, particularly at, but not limited to, future CO2 storage sites. Although preliminarily developed to support the design of crosshole resistivity layouts, our approach is directly applicable to other survey geometries including surface and surface-to-hole acquisitions.

REFERENCES

  • Aster, R. C., B. Borchers, and C. H. Thurber, 2012, Parameter estimation and inverse problems, 2nd ed.: Academic Press.Google Scholar
  • Bergmann, P., C. Schmidt-Hattenberger, D. Kiessling, C. Rücker, T. Labitzke, J. Henninges, G. Baumann, and H. Schütt, 2012, Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany: Geophysics, 77, no. 6, B253–B267, doi: 10.1190/geo2011-0515.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bing, Z., and S. Greenhalgh, 2000, Cross-hole resistivity tomography using different electrode configurations: Geophysical Prospecting, 48, 887–912, doi: 10.1046/j.1365-2478.2000.00220.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Binley, A., and A. Kemna, 2005, DC resistivity and induced polarization methods, in Rubin, Y.S. S. Hubbard, eds., Hydrogeophysics: Springer, Water Science and Technology Library Series, vol. 50, 129–156.CrossrefGoogle Scholar
  • Blome, M., H. Maurer, and S. A. Greenhalgh, 2011, Geoelectric experimental design — Efficient acquisition and exploitation of complete pole-bipole data sets: Geophysics, 76, no. 1, F15–F26, doi: 10.1190/1.3511350.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Boschi, L., 2003, Measures of resolution in global body wave tomography: Geophysical Research Letters, 30, 1978, doi: 10.1029/2003GL018222.GPRLAJ0094-8276CrossrefWeb of ScienceGoogle Scholar
  • Breen, S. J., C. R. Carrigan, D. J. LaBrecque, and R. L. Detwiler, 2012, Bench-scale experiments to evaluate electrical resistivity tomography as a monitoring tool for geologic CO2 sequestration: International Journal of Greenhouse Gas Control, 9, 484–494, doi: 10.1016/j.ijggc.2012.04.009.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Carrigan, C., X. Yang, D. J. LaBrecque, D. Larsen, D. Freeman, A. L. Ramirez, W. Daily, R. Aines, R. Newmark, J. Friedmann, and S. Hovorka, 2013, Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs: International Journal of Greenhouse Gas Control, 18, 401–408, doi: 10.1016/j.ijggc.2013.04.016.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Christensen, N., D. Sherlock, and K. Dodds, 2006, Monitoring CO2 injection with cross-hole electrical resistivity tomography: Exploration Geophysics, 37, 44–49, doi: 10.1071/EG06044.CrossrefWeb of ScienceGoogle Scholar
  • Coscia, I., L. Marescot, H. Maurer, S. Greenhalgh, and N. Linde, 2008, Experimental design for crosshole electrical resistivity tomography data sets: Presented at Near Surface — 14th European Meeting of Environmental and Engineering Geophysics, Extended Abstracts, B23.CrossrefGoogle Scholar
  • Daily, W., A. Ramirez, D. LaBrecque, and J. Nitao, 1992, Electrical resistivity tomography of vadose water movement: Water Resources Research, 28, 1429–1442, doi: 10.1029/91WR03087.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Deceuster, J., O. Kaufmann, and M. Van Camp, 2013, Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments: Geophysics, 78, no. 2, E79–E94, doi: 10.1190/geo2012-0088.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Friedel, S., 2003, Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach: Geophysical Journal International, 153, 305–316, doi: 10.1046/j.1365-246X.2003.01890.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Furman, A., T. P. A. Ferre, and G. L. Heath, 2007, Spatial focusing of geoelectrical resistivity surveys considering geologic and hydrologic layering: Geophysics, 72, no. 2, F65–F73, doi: 10.1190/1.2433737.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Günther, T., C. Rücker, and K. Spitzer, 2006, Three-dimensional modelling and inversion of DC resistivity data incorporating topography — Part II: Inversion: Geophysical Journal International, 166, 506–517, doi: 10.1111/j.1365-246X.2006.03011.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Kemna, A., 2000, Tomographic inversion of complex resistivity: Theory and application: Ph.D. thesis, Ruhr-Universität Bochum.Google Scholar
  • Kiessling, D., C. Schmidt-Hattenberger, H. Schuett, F. R. Schilling, K. Krueger, B. Schoebel, E. Danckwardt, and J. Kummerow, 2010, Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany): International Journal of Greenhouse Gas Control, 4, 816–826, doi: 10.1016/j.ijggc.2010.05.001.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Köhler, S., J. Zemke, W. Becker, J. Wiebach, A. Liebscher, F. Möller, and A. Bannach, 2013, Operational reservoir monitoring at the CO2 pilot storage site Ketzin, Germany, in Hou, M. Z.H. XieP. Were, eds., Clean energy systems in the subsurface: Production, storage and conversion: Springer, Springer Series in Geomechanics and Geoengineering, 53–63.CrossrefGoogle Scholar
  • Kummerow, J., and E. Spangenberg, 2011, Experimental evaluation of the impact of the interactions of CO2-SO2, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany: Geochemistry, Geophysics, Geosystems, 12, Q05010, doi: 10.1029/2010GC003469.GGGGFR1525-2027CrossrefWeb of ScienceGoogle Scholar
  • Loke, M. H., P. B. Wilkinson, and J. E. Chambers, 2010, Fast computation of optimized electrode arrays for 2D resistivity surveys: Computers & Geosciences, 36, 1414–1426, doi: 10.1016/j.cageo.2010.03.016.CGEODT0098-3004CrossrefWeb of ScienceGoogle Scholar
  • Loke, M. H., P. B. Wilkinson, J. E. Chambers, and M. Strutt, 2014, Optimized arrays for 2D cross-borehole electrical tomography surveys: Geophysical Prospecting, 62, 172–189, doi: 10.1111/1365-2478.12072.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Martens, S., T. Kempka, A. Liebscher, S. Lth, F. Möller, A. Myrttinen, B. Norden, C. Schmidt-Hattenberger, M. Zimmer, and M. Kühn, 2012, Europe’s longest-operating onshore CO2 storage site at Ketzin, Germany: A progress report after three years of injection: Environmental Earth Sciences, 67, 323–334, doi: 10.1007/s12665-012-1672-5.EESNCZ1866-6280CrossrefWeb of ScienceGoogle Scholar
  • Maurer, H., A. Curtis, and D. E. Boerner, 2010, Recent advances in optimized geophysical survey design: Geophysics, 75, no. 5, A177–A194, doi: 10.1190/1.3484194.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Maurer, H., and S. Friedel, 2006, Outer-space sensitivities in geoelectrical tomography: Geophysics, 71, no. 3, G93–G96, doi: 10.1190/1.2194891.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Norden, B., A. Föster, D. Vu-Hoang, F. Marcelis, N. Springer, and I. Le Nir, 2010, Lithological and petrophysical core-log interpretation in CO2SINK, the European CO2 onshore research storage and verification project: SPE Reservoir Evaluation & Engineering, 13, 179–192, doi: 10.2118/115247-PA.SREEFG1094-6470CrossrefWeb of ScienceGoogle Scholar
  • Oldenborger, G. A., and P. S. Routh, 2009, The point-spread function measure of resolution for the 3D electrical resistivity experiment: Geophysical Journal International, 176, 405–414, doi: 10.1111/j.1365-246X.2008.04003.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Perri, M. T., G. Cassiani, I. Gervasio, R. Deiana, and A. Binley, 2012, A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results: Journal of Applied Geophysics, 79, 6–16, doi: 10.1016/j.jappgeo.2011.12.011.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Ramirez, A. L., R. L. Newmark, and W. D. Daily, 2003, Monitoring carbon dioxide sequestration using electrical resistance tomography (ERT): Sensitivity studies: Journal of Environmental and Engineering Geophysics, 8, 187–208, doi: 10.4133/JEEG8.3.187.1083-1363AbstractGoogle Scholar
  • Rücker, C., T. Günther, and K. Spitzer, 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography — Part I: Modelling: Geophysical Journal International, 166, 495–505, doi: 10.1111/j.1365-246X.2006.03010.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Schmidt-Hattenberger, C., P. Bergmann, T. Labitzke, S. Schröder, K. Krüger, C. Rücker, and H. Schütt, 2012, A modular geoelectrical monitoring system as part of the surveillance concept in CO2 storage projects: Energy Procedia, 23, 400–407, doi: 10.1016/j.egypro.2012.06.062.EPNRCV1876-6102CrossrefGoogle Scholar
  • Slater, L., A. Binley, W. Daily, and R. Johnson, 2000, Cross-hole electrical imaging of a controlled saline tracer injection: Journal of Applied Geophysics, 44, 85–102, doi: 10.1016/S0926-9851(00)00002-1.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Soldati, G., L. Boschi, and A. Piersanti, 2006, Global seismic tomography and modern parallel computers: Annals of Geophysics, 49, 977–986, doi: 10.4401/ag-4407.1593-5213CrossrefWeb of ScienceGoogle Scholar
  • Stummer, P., H. Maurer, and A. G. Green, 2004, Experimental design: Electrical resistivity data sets that provide optimum subsurface information: Geophysics, 69, 120–139, doi: 10.1190/1.1649381.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wang, Q., X. Zhang, Y. Zhang, and Q. Yi, 2013, AUGEM: Automatically generate high performance dense linear algebra kernels on x86 CPUs: Presented at ACM International Conference on High Performance Computing, Networking, Storage and Analysis, 25:1–25:12.CrossrefGoogle Scholar
  • Wilkinson, P. B., M. H. Loke, P. I. Meldrum, J. E. Chambers, O. Kuras, D. A. Gunn, and R. Ogilvy, 2012, Practical aspects of applied optimized survey design for electrical resistivity tomography: Geophysical Journal International, 189, 428–440, doi: 10.1111/j.1365-246X.2012.05372.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Wilkinson, P. B., P. I. Meldrum, J. E. Chambers, O. Kuras, and R. D. Ogilvy, 2006, Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations: Geophysical Journal International, 167, 1119–1126, doi: 10.1111/j.1365-246X.2006.03196.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Wilkinson, P. B., P. I. Meldrum, O. Kuras, J. E. Chambers, S. J. Holyoake, and R. D. Ogilvy, 2010, High-resolution electrical resistivity tomography monitoring of a tracer test in a conned aquifer: Journal of Applied Geophysics, 70, 268–276, doi: 10.1016/j.jappgeo.2009.08.001.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Xu, B., and M. Noel, 1993, On the completeness of data sets with multielectrode systems for electrical resistivity surveys: Geophysical Prospecting, 41, 791–801, doi: 10.1111/j.1365-2478.1993.tb00885.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar