This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Shoreface ravinement evolution tracked by repeat geophysical surveys following Hurricane Ike, Bolivar Peninsula, Texas, 2008–2013

Authors:

We have investigated the impact of Hurricane Ike on the shoreface of the Bolivar Peninsula, Texas, using three near-surface marine geophysical surveys during a five-year span following the storm, which made landfall in September of 2008. Multibeam bathymetry, sidescan backscatter, and CHIRP subbottom reflection data were collected during each survey. The first survey, in November, 2008, discovered the presence of an erosional, landward-facing scarp across a broad of the barrier spit shoreface at approximately 3.5-m water depth. The erosion incised into a shallow reflection horizon interpreted as the Holocene shoreface ravinement, exposing lag deposits that were truncated at the scarp and forming a thin high-backscatter anomaly. Up to 1.0 m of material was excavated shoreward of the scarp, including up to 0.5 m of shoreface sand above the shoreface ravinement, and another 0.5 m of indeterminate lithology below, consisting of easily erodible material. A second survey, in May 2010, found that the scarp had migrated seaward by up to 100 m and the depth of erosion indicated by the scarp had reduced to approximately 0.5m. In a May 2013 survey, the scarp was no longer in evidence. The initial erosional event is interpreted to be caused by the ebb flow of the storm surge across the peninsula compounded by high-wave orbital velocities in the waning storm. This erosional event and its subsequent evolution demonstrate an impact on the shoreface lasting for years post-storm, as the shoreface gradually adjusted to a new equilibrium profile. These results document that an advancement of a shoreface ravinement can be caused by a single large event (e.g., tropical storm or hurricane) in this microtidal, relatively low wave energy setting. This process, tracked with near-surface geophysical techniques, was a key but seldom-observed component of the back stepping of barrier islands during sea-level rise.

REFERENCES

  • Allen, G. P., and H. W. Posamentier, 1993, Sequence stratigraphy and facies model of an incised valley fill: The Gironde Estuary, France: Journal of Sedimentary Petrology, 63, 378–391, doi: 10.1306/D4267B09-2B26-11D7-8648000102C1865D.JSEPAK0022-4472CrossrefGoogle Scholar
  • Bruun, P., 1962, Sea-level rise as a cause of shore erosion: Journal of Waterways and Harbors Divisions, 88, 117–130.Google Scholar
  • Cattaneo, A., and R. J. Steel, 2003, Transgressive deposits: A review of their variability: Earth-Science Reviews, 62, 187–228, doi: 10.1016/S0012-8252(02)00134-4.ESREAV0012-8252CrossrefWeb of ScienceGoogle Scholar
  • Claudino-Sales, V., P. Wang, and M. H. Horwitz, 2010, Effects of Hurricane Ivan on coastal dunes of Santa Rosa barrier island, Florida: Characterized on the basis of pre- and poststorm LIDAR surveys: Journal of Coastal Research, 26, 470–484, doi: 10.2112/08-1105.1.JCRSEK0749-0208CrossrefWeb of ScienceGoogle Scholar
  • Cooke, R. U., and A. Warren, 1973, Geomorphology in deserts: University of California Press.CrossrefGoogle Scholar
  • Dalrymple, R. W., and E. L. Hoogendoorn, 1997, Erosion and deposition on migrating shoreface-attached ridges, Sable Island, eastern Canada: Geoscience Canada, 24, 25–36.GSCNA50315-0941Web of ScienceGoogle Scholar
  • DiMego, G. L., L. F. Bosart, and G. W. Enderson, 1976, An examination of the frequency and mean conditions surrounding frontal incursions into the Gulf of Mexico and Caribbean Sea: Monthly Weather Review, 104, 709–718, doi: 10.1175/1520-0493(1976)104<0709:AEOTFA>2.0.CO;2.MWREAB0027-0644CrossrefWeb of ScienceGoogle Scholar
  • Doran, K. S., N. G. Plant, H. F. Stockdon, A. H. Sallenger, and K. A. Serafin, 2009, Hurricane Ike: Observations and analysis of coastal change: USGS Open-File Report 2009-1061.Google Scholar
  • Friedman, G. M., 1962, On sorting, sorting coefficients, and the lognormality of the grain-size distribution of sandstones: Journal of Geology, 70, 737–753.JGEOAZ0022-1376CrossrefWeb of ScienceGoogle Scholar
  • Goff, J. A., M. A. Allison, and S. P. S. Gulick, 2010, Offshore transport of sediment during cyclonic storms: Hurricane Ike (2008), Texas Gulf Coast, USA: Geology, 38, 351–354, doi: 10.1130/G30632.1.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Goff, J. A., J. A. Austin, R. D. Flood, W. C. Schwab, J. F. Denny, B. A. Christensen, C. M. Browne, and S. Saustrup, 2013, Impact of Hurricane Sandy on the shoreface and inner shelf, offshore long island: Evidence for ravinement?: Presented at American Geophysical Union Fall Meeting, OS33C-05.Google Scholar
  • Goff, J. A., J. A. AustinJr., S. P. S. Gulick, S. Nordfjord, B. Christensen, C. Sommerfield, H. Olson, and C. Alexander, 2005, Recent and modern marine erosion on the New Jersey outer shelf: Marine Geology, 216, 275–296, doi: 10.1016/j.margeo.2005.02.015.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Goff, J. A., D. J. P. Swift, C. S. Duncan, L. A. Mayer, and J. Hughes-Clarke, 1999, High-resolution swath sonar investigation of sand ridge, dune and ribbon morphology in the offshore environment of the New Jersey margin: Marine Geology, 161, 307–337, doi: 10.1016/S0025-3227(99)00073-0.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Harris, C. K., and P. Wiberg, 2002, Across-shelf sediment transport: Interactions between suspended sediment and bed sediment: Journal of Geophysical Research, 107, doi: 10.1029/2000JC000634.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Hawkes, A. D., and B. P. Horton, 2012, Sedimentary record of storm deposits from Hurricane Ike, Galveston and San Luis Island, Texas: Geomorphology0169-555X, 171–172, 180–189, doi: 10.1016/j.geomorph.2012.05.017.CrossrefWeb of ScienceGoogle Scholar
  • Hayes, M. O., 1967, Hurricanes as geological agents; case studies of Hurricane Carla, 1961 and Cindy, 1963: University of Texas Bureau of Economic Geology, Report no. 61, 56 p.Google Scholar
  • Houser, C., 2012, Feedback between ridge and swale bathymetry and barrier island storm response and transgression: Geomorphology0169-555X, 173–174, 1–16, doi: 10.1016/j.geomorph.2012.05.021.CrossrefWeb of ScienceGoogle Scholar
  • Houser, C., C. Hapke, and S. Hamilton, 2008, Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms: Geomorphology0169-555X, 100, 223–240, doi: 10.1016/j.geomorph.2007.12.007.CrossrefWeb of ScienceGoogle Scholar
  • Kennedy, A. B., K. C. Slatton, T.-J. Hsu, M. J. Starek, and K. Kampa, 2008, Ephemeral sand waves in the hurricane surf zone: Marine Geology, 250, 276–280, doi: 10.1016/j.margeo.2008.01.015.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Kraft, B. J., and C. de Moustier, 2010, Detailed bathymetric surveys offshore Santa Rosa island, FL: Before and after hurricane Ivan (September 1, 2004): IEEE Journal of Oceanic Engineering, 35, 453–470, doi: 10.1109/JOE.2010.2052970.IJOEDY0364-9059CrossrefWeb of ScienceGoogle Scholar
  • Lee, G.-H., R. J. Nicholls, and W. A. Birkemeier, 1998, Storm-driven variability of beach-nearshore profile at Duck, North Carolina, USA, 1981–1991: Marine Geology, 148, 163–177, doi: 10.1016/S0025-3227(98)00010-3.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Lippmann, T. C., and R. A. Holman, 1990, The spatial and temporal variability of sand bar morphology: Journal of Geophysical Research, 95, 11575–11590, doi: 10.1029/JC095iC07p11575.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • McBride, R. A., L. C. Anderson, A. Tudoran, and H. H. Roberts, 1999, Holocene stratigraphic architecture of a sand-rich shelf and origin of linear shoals: Northeastern Gulf of Mexico, in Bergman, K. M.J. W. Snedden, eds., Isolated shallow marine sand bodies: Sequence stratigraphic analysis and sedimentologic interpretation: SEPM, Special Publication no. 64, 95–126.CrossrefGoogle Scholar
  • McBride, R. A., T. F. Moslow, H. H. Roberts, and R. J. Diecchio, 2004, Late Quaternary geology of the northeast Gulf of Mexico shelf: Sedimentology, depositional history and ancient analogs of a major shelf sand sheet of the modern transgressive systems tract, in Anderson, J. B.F. H. Fillon, eds., Late Quaternary stratigraphic evolution of the Northern Gulf of Mexico margin: SEPM Special Publication 79, 55–83.CrossrefGoogle Scholar
  • Morton, R. A., 2010, First-order controls of extreme-storm impacts on the Mississippi-Alabama barrier island chain: Journal of Coastal Research, 26, 635–648, doi: 10.2112/08-1152.1.JCRSEK0749-0208CrossrefWeb of ScienceGoogle Scholar
  • National Hurricane Center, 2015, NHC Data Archive, http://www.nhc.noaa.gov/data/#hurdat, accessed 6 March 2015.Google Scholar
  • Nordfjord, S., J. A. Goff, L. S. Duncan, and J. A. Austin, 2009, Shallow stratigraphy and transgressive ravinement on the New Jersey shelf: Implications for sedimentary lobe deposition and latest Pleistocene-Holocene sea level history: Marine Geology, 266, 232–243, doi: 10.1016/j.margeo.2009.08.010.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Nummedal, D., S. Penland, R. Gerdes, W. Schramm, J. Kahn, and H. Roberts, 1980, Geologic response to hurricane impact on low-profile gulf coast barriers: Transactions of the Gulf Coast Association of Geologic Societies, 30, 183–195.Google Scholar
  • Permanent Service for Mean Sea Level, 2015, Galveston I, http://www.psmsl.org/data/obtaining/stations/828.php, accessed 6 March 2015.Google Scholar
  • Posamentier, H. W., 2002, Ancient shelf ridges — A potentially significant component of the transgressive system tract: Case study from offshore northwest Java: AAPG Bulletin, 86, 75–106.Web of ScienceGoogle Scholar
  • Priestas, A. M., and S. Fagherazzi, 2010, Morphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George Island, Florida: Geomorphology0169-555X, 114, 614–626, doi: 10.1016/j.geomorph.2009.09.022.CrossrefWeb of ScienceGoogle Scholar
  • Rodriguez, A. B., J. B. Anderson, F. P. Siringan, and M. Taviani, 2004, Holocene evolution of the east Texas coast and inner continental shelf: Along strike variability in coastal retreat rates: Journal of Sedimentary Research, 74, 405–421, doi: 10.1306/092403740405.JSERFV1527-1404CrossrefWeb of ScienceGoogle Scholar
  • Rodriguez, A. B., M. L. Fassell, and J. B. Anderson, 2001, Variations in shoreface progradation and ravinement along the Texas coast, Gulf of Mexico: Sedimentology, 48, 837–853, doi: 10.1046/j.1365-3091.2001.00390.x.SEDIAT0037-0746CrossrefWeb of ScienceGoogle Scholar
  • Ruessink, B. G., and J. H. J. Terwindt, 2000, The behavior of near-shore bars on the timescale of years: A conceptual model: Marine Geology, 163, 289–302, doi: 10.1016/S0025-3227(99)00094-8.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Schwab, W. C., W. E. Baldwin, C. J. Hapke, E. E. Lentz, P. T. Gayes, J. F. Denny, J. H. List, and J. C. Warner, 2013, Geologic evidence for onshore sediment transport from the inner continental shelf: Fire Island, New York: Journal of Coastal Research, 29, 526–544, doi: 10.2112/JCOASTRES-D-12-00160.1.JCRSEK0749-0208CrossrefWeb of ScienceGoogle Scholar
  • Sherman, D. J., B. U. Hales, M. K. Potts, J. T. Ellis, H. Liu, and C. Houser, 2013, Impacts of Hurricane Ike on the beaches of Bolivar Peninsula, TX, USA: Geomorphology0169-555X, 199, 62–81, doi: 10.1016/j.geomorph.2013.06.011.CrossrefWeb of ScienceGoogle Scholar
  • Siringan, F. P., and J. B. Anderson, 1993, Seismic facies, architecture, and evolution of the Bolivar Roads tidal inlet/delta complex, east Texas Gulf coast: Journal of Sedimentary Petrology, 63, 794–808, doi: 10.1306/D4267C08-2B26-11D7-8648000102C1865D.JSEPAK0022-4472CrossrefGoogle Scholar
  • Siringan, F. P., and J. B. Anderson, 1994, Modern shoreface and inner-shelf storm deposits off the east Texas coast, Gulf of Mexico: Journal of Sedimentary Research, 64, 99–110, doi: 10.1306/D4267F69-2B26-11D7-8648000102C1865D.JSERFV1527-1404CrossrefWeb of ScienceGoogle Scholar
  • Snedden, J. W., D. Nummedal, and A. F. Amos, 1988, Storm- and fair-weather combined flow on the central Texas continental shelf: Journal of Sedimentary Petrology, 58, 580–595.JSEPAK0022-4472Google Scholar
  • Swift, D. J. P., 1968, Coastal erosion and transgressive stratigraphy: Journal of Geology, 76, 444–456, doi: 10.1086/627342.JGEOAZ0022-1376CrossrefWeb of ScienceGoogle Scholar
  • Swift, D. J. P., and J. A. Thorne, 1991, Sedimentation on continental margins: Part I — A general model for shelf sedimentation, in Swift, D. J. P., ed., Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy: Wiley 14, of Special Publications of the International Association of Sedimentologists, 3–31.Google Scholar
  • Thomas, D. S. G., 1989, Aeolian land deposits, in Thomas, D. S. G., ed., Arid zone geomorphology: Halsted Press, 232–255.Google Scholar
  • Thorne, J. A., and D. J. P. Swift, 1991, Sedimentation on continental margins: Part VI — A regime model for depositional sequences, their component system tracts, and bounding surfaces, in Swift, D. J. P., ed., Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy: Wiley 14, of Special Publications of the International Association of Sedimentologists, 189–255.Google Scholar
  • Wallace, D. J., and J. B. Anderson, 2013, Unprecedented erosion of the upper Texas coast: Response to accelerated sea-level rise and hurricane impacts: Geological Society of America Bulletin, 125, 728–740, doi: 10.1130/B30725.1.BUGMAF0016-7606CrossrefWeb of ScienceGoogle Scholar
  • Wallace, D. J., J. B. Anderson, and R. A. Fernández, 2010, Transgressive ravinement versus depth of closure: A geological perspective from the upper Texas coast: Journal of Coastal Research, 26, 1057–1067, doi: 10.2112/JCOASTRES-D-10-00034.1.JCRSEK0749-0208CrossrefWeb of ScienceGoogle Scholar
  • Wallace, D. J., J. B. Anderson, and A. B. Rodriguez, 2009, Natural versus anthropogenic mechanisms of erosion along the upper Texas Coast, in Kelley, J. T.O. H. PilkeyJ. A. G. Cooper, eds., America’s most vulnerable coastal communities: Geological Society of America, Special Paper 460, 137–147.CrossrefGoogle Scholar
  • Wright, L. D., and A. D. Short, 1984, Morphodynamic variability of surf zones and beaches: A synthesis: Marine Geology, 56, 93–118, doi: 10.1016/0025-3227(84)90008-2.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Wright, L. D., J. P. Xu, and O. S. Madsen, 1994, Across-shelf benthic transport on the inner shelf of the Middle Atlantic Bight during the “Halloween storm” of 1991: Marine Geology, 118, 61–77, doi: 10.1016/0025-3227(94)90113-9.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar