This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×
On Tuesday, 28 May 2024, from 1:00 am CDT to 1:00 pm CDT, the SEG Library will undergo a major site upgrade. During this time, users will be able to access their accounts, but certain features may be unavailable. We apologize for the inconvenience.

Surface waves are advantageous for mapping seismic structures of permafrost, in which irregular velocity gradients are common and thus the effectiveness of refraction methods are limited. Nevertheless, the complex velocity structures that are common in permafrost environments often yield unusual dispersion spectra, in which higher-order and leaky modes are dominant. Such unusual dispersion spectra were prevalent in the multichannel surface-wave data acquired from our permafrost study site at Barrow, Alaska. Owing to the difficulties in picking and identifying dispersion curves from these dispersion spectra, conventional surface-wave inversion methods become problematic to apply. To overcome these difficulties, we adopted a full-wavefield method to invert for velocity models that can best fit the dispersion spectra instead of the dispersion curves. The inferred velocity models were consistent with collocated electric resistivity results and with subsequent confirmation cores, which indicated the reliability of the recovered seismic structures. The results revealed embedded low-velocity zones underlying the ice-rich permafrost at our study site — an unexpected feature considering the low ground temperatures of 10°C to 8°C. The low velocities in these zones (70%80% lower than the overlying ice-rich permafrost) were most likely caused by saline pore-waters that prevent the ground from freezing, and the resultant velocity structures are vivid examples of complex subsurface properties in permafrost terrain. We determined that full-wavefield inversion of surface waves, although carrying higher computational costs than conventional methods, can be an effective tool for delineating the seismic structures of permafrost.

REFERENCES

  • Akimov, A. T., 1973, Logging in shallow dry boreholes for studying geotechnical and geodynamic characteristics of frozen soils: in Sanger, F. J.P. J.. Hyde, eds., Proceedings of International Conference on Permafrost, U.S.S.R. Contribution, U.S. National Academy of Sciences, 452–456.Google Scholar
  • Barnes, D. F., 1963, A review of geophysical methods for delineating permafrost: in Woods, K. B., ed., Proceedings of International Conference on Permafrost, U.S. National Academy of Sciences, 349–355.Google Scholar
  • Beaty, K. S., D. R. Schmitt, and M. Sacchi, 2002, Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure: Geophysical Journal International, 151, 622–631, doi: 10.1046/j.1365-246X.2002.01809.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Bergamo, P., C. Comina, S. Foti, and M. Maraschini, 2011, Seismic characterization of shallow bedrock sites with multimodal Monte Carlo inversion of surface wave data: Soil Dynamics and Earthquake Engineering, 31, 530–534, doi: 10.1016/j.soildyn.2010.10.006.IJDEDD0261-7277CrossrefWeb of ScienceGoogle Scholar
  • Black, R. F., 1964, Gubik formation of quaternary age in northern Alaska: Exploration of naval petroleum reserve no. 4 and adjacent areas, Northern Alaska, 1944–53: U.S. Geological Survey, Professional paper, 59–91.Google Scholar
  • Boiero, D., E. Wiarda, and P. Vermeer, 2013, Surface- and guided-wave inversion for near-surface modeling in land and shallow marine seismic data: The Leading Edge, 32, 638–646, doi: 10.1190/tle32060638.1.1070-485XAbstractGoogle Scholar
  • Brown, J., 1969, Ionic concentration gradient in permafrost, Barrow, Alaska: U.S. Army Cold Regions Research and Engineering Laboratory, Research report.Google Scholar
  • Collins, F. R., and M. C. Brewer, 1961, Core tests and test wells, Barrow area, Alaska: Exploration of naval petroleum reserve no. 4 and adjacent areas, northern Alaska, 1944-53. Part 5, Subsurface geology and engineering data: U.S. Geological Survey, Professional paper, 569–644.Google Scholar
  • Cox, M., E. F. Scherrer, and R. Chen, 1999, Static corrections for seismic reflection surveys: SEG.AbstractGoogle Scholar
  • Douma, H., and M. Haney, 2013, Exploring nonlinearity and nonuniqueness in surface-wave inversion for near-surface velocity estimation: The Leading Edge, 32, 648–655, doi: 10.1190/tle32060648.1.1070-485XAbstractGoogle Scholar
  • Forbriger, T., 2003a, Inversion of shallow-seismic wavefields: I. Wavefield transformation: Geophysical Journal International, 153, 719–734, doi: 10.1046/j.1365-246X.2003.01929.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Forbriger, T., 2003b, Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms: Geophysical Journal International, 153, 735–752, doi: 10.1046/j.1365-246X.2003.01985.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Gautier, D. L., K. J. Bird, R. R. Charpentier, A. Grantz, D. W. Houseknecht, T. R. Klett, T. E. Moore, J. K. Pitman, C. J. Schenk, J. H. Schuenemeyer, K. Sorensen, M. E. Tennyson, Z. C. Valin, and C. J. Wandrey, 2009, Assessment of undiscovered oil and gas in the Arctic: Science, 324, 1175–1179, doi: 10.1126/science.1169467.SCIEAS0036-8075CrossrefWeb of ScienceGoogle Scholar
  • Gilichinsky, D., E. Rivkina, C. Bakermans, V. Shcherbakova, L. Petrovskaya, S. Ozerskaya, N. Ivanushkina, G. Kochkina, K. Laurinavichuis, S. Pecheritsina, R. Fattakhova, and J. M. Tiedje, 2005, Biodiversity of cryopegs in permafrost: FEMS Microbiology Ecology, 53, 117–128, doi: 10.1016/j.femsec.2005.02.003.FMECEZ0168-6496CrossrefWeb of ScienceGoogle Scholar
  • Hamilton, E. L., 1976, Attenuation of shear waves in marine sediments: Journal of the Acoustical Society of America, 60, 334–338, doi: 10.1121/1.381111.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • Harvey, D. J., 1981, Seismogram synthesis using normal mode superposition: The locked mode approximation: Geophysical Journal of the Royal Astronomical Society, 66, 37–69, doi: 10.1111/j.1365-246X.1981.tb05947.x.GEOJAN0016-8009CrossrefWeb of ScienceGoogle Scholar
  • Hauck, C., and C. Kneisel, 2008, Applied geophysics in periglacial environments: Cambridge University Press.CrossrefGoogle Scholar
  • Hayashi, K., 2012, Analysis of surface-wave data including higher modes using the genetic algorithm, GeoCongress 2012: American Society of Civil Engineers, 2776–2785.Google Scholar
  • Herrmann, R. B., 2004, Computer programs in seismology, version 3.30, http://www.eas.slu.edu/eqc/eqccps.html, accessed 15 January 2012.Google Scholar
  • Hilbich, C., 2010, Time-lapse refraction seismic tomography for the detection of ground ice degradation: The Cryosphere, 4, 243–259, doi: 10.5194/tc-4-243-2010.1994-0416CrossrefWeb of ScienceGoogle Scholar
  • Hinkel, K. M., and F. E. Nelson, 2003, Spatial and temporal patterns of active layer thickness at Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska 1995-2000: Journal of Geophysical Research, 108, 8168, doi: 10.1029/2001JD000927.JGRDE30148-0227CrossrefWeb of ScienceGoogle Scholar
  • Hubbard, S. S., C. Gangodagamage, B. Dafflon, H. Wainwright, J. Peterson, A. Gusmeroli, C. Ulrich, Y. Wu, C. Wilson, J. Rowland, C. Tweedie, and S. D. Wullschleger, 2013, Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets: Hydrogeology Journal, 21, 149–169, doi: 10.1007/s10040-012-0939-y.HJYOAW1431-2174CrossrefWeb of ScienceGoogle Scholar
  • Huyer, W., and A. Neumaier, 1999, Global optimization by multilevel coordinate search: Journal of Global Optimization, 14, 331–355, doi: 10.1023/A:1008382309369.JGOPEO0925-5001CrossrefWeb of ScienceGoogle Scholar
  • Ikeda, T., T. Matsuoka, T. Tsuji, and K. Hayashi, 2012, Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method: Geophysical Journal International, 190, 541–552, doi: 10.1111/j.1365-246X.2012.05496.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Jones, A., V. Stolbovoy, C. Tarnocai, G. Broll, O. Spaargaren, and L. Montanarella, 2009, Soil atlas of the northern circumpolar region: European Commission.Google Scholar
  • Jorgenson, M. T., K. Yoshikawa, M. Kanveskiy, Y. L. Shur, V. Romanovsky, S. Marchenko, G. Grosse, J. Brown, and B. Jones, 2008, Permafrost characteristics of Alaska: Institute of Northern Engineering, University of Alaska, Fairbanks.Google Scholar
  • Justice, J. H., and C. Zuba, 1986, Transition zone reflections and permafrost analysis: Geophysics, 51, 1075–1086, doi: 10.1190/1.1442163.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ke, G., H. Dong, Z. Cao, and L. Liu, 2010, Surface wave dispersion curve calculation in TIV medium: 80th Annual International Meeting, SEG, Expanded Abstracts, 1924–1928.Google Scholar
  • King, M. S., B. I. Pandit, J. A. Hunter, and M. Gajtani, 1982, Some seismic, electrical, and thermal properties of sub-seabottom permafrost from the Beaufort Sea, in French, H. M., ed., Proceedings of the Fourth Canadian Permafrost Conference: National Research Council of Canada, 268–273.Google Scholar
  • Kneisel, C., C. Hauck, R. Fortier, and B. Moorman, 2008, Advances in geophysical methods for permafrost investigations: Permafrost and Periglacial Processes, 19, 157–178, doi: 10.1002/ppp.616.PEPPED1099-1530CrossrefWeb of ScienceGoogle Scholar
  • Lu, L., and B. Zhang, 2006, Inversion of Rayleigh waves using a genetic algorithm in the presence of a low-velocity layer: Acoustical Physics, 52, 701–712, doi: 10.1134/S106377100606011X.AOUSEK1063-7710CrossrefWeb of ScienceGoogle Scholar
  • Lu, L. Y., C. H. Wang, and B. X. Zhang, 2007, Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: Numerical and laboratory study: Geophysical Journal International, 168, 1235–1246, doi: 10.1111/j.1365-246X.2006.03258.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Maraschini, M., F. Ernst, S. Foti, and L. V. Socco, 2010, A new misfit function for multimodal inversion of surface waves: Geophysics, 75, G31–G43, doi: 10.1190/1.3436539.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Maraschini, M., and S. Foti, 2010, A Monte Carlo multimodal inversion of surface waves: Geophysical Journal International, 182, 1557–1566, doi: 10.1111/j.1365-246X.2010.04703.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Matsushima, J., M. Suzuki, Y. Kato, T. Nibe, and S. Rokugawa, 2008, Laboratory experiments on compressional ultrasonic wave attenuation in partially frozen brines: Geophysics, 73, no. 2, N9–N18, doi: 10.1190/1.2827214.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Matsushima, J., M. Suzuki, Y. Kato, and S. Rokugawa, 2011, Laboratory measurements of ultrasonic P-wave and S-wave attenuation in partially frozen unconsolidated sediments saturated with brine: 81st Annual International Meeting, SEG, Expanded Abstracts, 2130–2134.Google Scholar
  • Meyer, H., L. Schirrmeister, A. Andreev, D. Wagner, H.-W. Hubberten, K. Yoshikawa, A. Bobrov, S. Wetterich, T. Opel, E. Kandiano, and J. Brown, 2010, Late glacial and Holocene isotopic and environmental history of northern coastal Alaska — Results from a buried ice-wedge system at Barrow: Quaternary Science Reviews, 29, 3720–3735, doi: 10.1016/j.quascirev.2010.08.005.QSREDU0277-3791CrossrefWeb of ScienceGoogle Scholar
  • Miller, R. D., J. A. Hunter, W. E. Doll, B. J. Carr, R. A. Burns, R. L. Good, D. R. Laflen, and M. Douma, 2000, Imaging permafrost with shallow P- and S-wave reflection: 70th Annual International Meeting, SEG, Expanded Abstracts, 1339–1342.AbstractGoogle Scholar
  • Mueller, J. L., and S. Siltanen, 2012, Linear and nonlinear inverse problems with practical applications: Society for Industrial and Applied Mathematics.CrossrefGoogle Scholar
  • Nelder, J. A., and R. Mead, 1965, A simplex-method for function minimization: Computer Journal, 7, 308–313, doi: 10.1093/comjnl/7.4.308.CMPJA60010-4620CrossrefWeb of ScienceGoogle Scholar
  • Neumaier, A., 2000, MCS: global optimization by Multilevel Coordinate Search, version 2.0, http://www.mat.univie.ac.at/~neum/software/mcs/, accessed 22 July 2012.Google Scholar
  • O’Neill, A., M. Dentith, and R. List, 2003, Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications: Exploration Geophysics, 34, 158–173, doi: 10.1071/EG03158.EXGEEF0812-3985CrossrefWeb of ScienceGoogle Scholar
  • O’Neill, A., and T. Matsuoka, 2005, Dominant higher surface-wave modes and possible inversion pitfalls: Journal of Environmental and Engineering Geophysics, 10, 185–201, doi: 10.2113/JEEG10.2.185.1083-1363AbstractWeb of ScienceGoogle Scholar
  • O’Sullivan, J., 1966, Geochemistry of permafrost, Barrow, Alaska: in Woods, K. B., et al., eds., Proceedings of International Conference on Permafrost, National Academy of Sciences, U. S. National Academy of Sciences, 1287, 30–37.Google Scholar
  • Pan, Y., J. Xia, and C. Zeng, 2013, Verification of correctness of using real part of complex root as Rayleigh-wave phase velocity with synthetic data: Journal of Applied Geophysics, 88, 94–100, doi: 10.1016/j.jappgeo.2012.09.012.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Pandit, B. I., and M. S. King, 1979, A study of the effects of pore-water salinity on some physical properties of sedimentary rocks at permafrost temperatures: Canadian Journal of Earth Sciences, 16, 1566–1580, doi: 10.1139/e79-143.CJESAP0008-4077CrossrefWeb of ScienceGoogle Scholar
  • Park, C. B., R. D. Miller, and J. H. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808, doi: 10.1190/1.1444590.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pavlakovic, B., M. Lowe, D. Alleyne, and P. Cawley, 1997, Disperse: A general purpose program for creating dispersion curves, in Thompson, D.D. Chimenti, eds., Review of progress in quantitative nondestructive evaluation: Springer, vol. 16, 185–192.CrossrefGoogle Scholar
  • Pošík, P., W. Huyer, and L. Pál, 2012, A comparison of global search algorithms for continuous black box optimization: Evolutionary Computation, 20, 509–541, doi: 10.1162/EVCO_a_00084.EOCMEOCrossrefWeb of ScienceGoogle Scholar
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992, Numerical recipes in C: The art of scientific computing: Cambridge University Press.Google Scholar
  • Ramachandran, K., G. Bellefleur, T. Brent, M. Riedel, and S. Dallimore, 2011, Imaging permafrost velocity structure using high resolution 3D seismic tomography: Geophysics, 76, no. 5, B187–B198, doi: 10.1190/geo2010-0353.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Rix, G. J., and E. A. Leipski, 1991, Accuracy and resolution of surface wave inversion: Recent advances in instrumentation, data acquisition and testing in soil dynamics, ASCE, 17–32.Google Scholar
  • Ryden, N., and M. J. S. Lowe, 2004, Guided wave propagation in three-layer pavement structures: Journal of the Acoustical Society of America, 116, 2902–2913, doi: 10.1121/1.1808223.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • Ryden, N., and C. B. Park, 2004, Surface waves in inversely dispersive media: Near Surface Geophysics, 2, 187–197, doi: 10.3997/1873-0604.2004016.1569-4445CrossrefWeb of ScienceGoogle Scholar
  • Ryden, N., and C. B. Park, 2006, Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra: Geophysics, 71, no. 4, R49–R58, doi: 10.1190/1.2204964.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sain, K., and A. K. Singh, 2011, Seismic quality factors across a bottom simulating reflector in the Makran Accretionary Prism, Arabian Sea: Marine and Petroleum Geology, 28, 1838–1843, doi: 10.1016/j.marpetgeo.2011.03.013.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Sain, K., A. K. Singh, N. K. Thakur, and R. Khanna, 2009, Seismic quality factor observations for gas-hydrate-bearing sediments on the western margin of India: Marine Geophysical Researches, 30, 137–145, doi: 10.1007/s11001-009-9073-1.MGYRA70025-3235CrossrefWeb of ScienceGoogle Scholar
  • Sellmann, P. V., J. Brown, R. Lewellen, H. McKim, and C. Merry, 1975, The classification and geomorphic implications of thaw lakes on the Arctic coastal plain, Alaska: U.S. Army Cold Regions Research and Engineering Laboratory, Research report.CrossrefGoogle Scholar
  • Sheriff, R. E., 2002, Encyclopedic dictionary of applied geophysics: SEG, 203–217.AbstractGoogle Scholar
  • Snieder, R., 1998, The role of nonlinearity in inverse problems: Inverse Problems, 14, 387–404, doi: 10.1088/0266-5611/14/3/003.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Socco, L. V., and D. Boiero, 2008, Improved Monte Carlo inversion of surface wave data: Geophysical Prospecting, 56, 357–371, doi: 10.1111/j.1365-2478.2007.00678.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Socco, L. V., S. Foti, and D. Boiero, 2010, Surface-wave analysis for building near-surface velocity models — Established approaches and new perspectives: Geophysics, 75, no. 5, A83–A102, doi: 10.1190/1.3479491.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Spetzler, H., and D. L. Anderson, 1968, The effect of temperature and partial melting on velocity and attenuation in a simple binary system: Journal of Geophysical Research, 73, 6051–6060, doi: 10.1029/JB073i018p06051.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Strobbia, C., A. Glushchenko, A. Laake, P. Vermeer, T. J. Papworth, and Y. Ji, 2009, Arctic near surface challenges: The point receiver solution to coherent noise and statics: First Break, 27, 69–76.0263-5046CrossrefGoogle Scholar
  • Thurston, D. K., and L. A. Theiss, and U. S. M. M. S. A. O. Region, 1987, Geologic report for the Chukchi Sea planning area, Alaska: Regional geology, petroleum geology, and environmental geology: U.S. Department of the Interior, Minerals Management Service, Alaska OCS Region.Google Scholar
  • Timur, A., 1968, Velocity of compressional waves in porous media at permafrost temperatures: Geophysics, 33, 584–595, doi: 10.1190/1.1439954.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Trupp, R., J. Hastings, S. Cheadle, and R. Vesely, 2009, Seismic in arctic environs: Meeting the challenge: The Leading Edge, 28, 936–942, doi: 10.1190/1.3192840.1070-485XAbstractGoogle Scholar
  • Tsuji, T., T. A. Johansen, B. O. Ruud, T. Ikeda, and T. Matsuoka, 2012, Surface-wave analysis for identifying unfrozen zones in subglacial sediments: Geophysics, 77, no. 3, EN17–EN27, doi: 10.1190/geo2011-0222.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Velli, Y. Y., and P. A. Grishin, 1983, On the functional dependence of the freezing point of soils on the composition of water soluble salts in an interstitial solution, Rheology of soils and engineering geocryology (translated from Russian): Canada Institute for Scientific and Technical Information, 193–196.Google Scholar
  • Wathelet, M., D. Jongmans, and M. Ohrnberger, 2004, Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements: Near Surface Geophysics, 2, 211–221, doi: 10.3997/1873-0604.2004018.1569-4445CrossrefWeb of ScienceGoogle Scholar
  • Williams, J. R., 1970, Ground water in the permafrost regions of Alaska: Ground water in permafrost regions in Alaska occurs according to the same geologic and hydrologic principles prevailing in temperate regions: U.S. Geological Survey.Google Scholar
  • Williams, J. R., and L. D. Carter, 1984, Engineering-geologic maps of northern Alaska, Barrow quadrangle: U.S. Geological Survey, Open-file report 84–124.Google Scholar
  • Xia, J. H., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Xia, J. H., R. D. Miller, C. B. Park, and G. Tian, 2003, Inversion of high frequency surface waves with fundamental and higher modes: Journal of Applied Geophysics, 52, 45–57, doi: 10.1016/S0926-9851(02)00239-2.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Yilmaz, O., and A. Kocaoglu, 2012, Effect of lateral heterogeneity in the soil column on shear-wave velocity estimation by Rayleigh-wave inversion: The Leading Edge, 31, 758–765, doi: 10.1190/tle31070758.1.1070-485XAbstractGoogle Scholar
  • Yoshikawa, K., V. Romanovsky, N. Duxbury, J. Brown, and A. Tsapin, 2004, The use of geophysical methods to discriminate between brine layers and freshwater taliks in permafrost regions: Journal of Glaciology and Geocryology, 26,1000-0240 301–309.Google Scholar
  • Zhang, S. X., and L. S. Chan, 2003, Possible effects of misidentified mode number on Rayleigh wave inversion: Journal of Applied Geophysics, 53, 17–29, doi: 10.1016/S0926-9851(03)00014-4.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Zimmerman, R. W., and M. S. King, 1986, The effect of the extent of freezing on seismic velocities in unconsolidated permafrost: Geophysics, 51, 1285–1290, doi: 10.1190/1.1442181.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zimov, S. A., E. A. G. Schuur, and F. S. Chapin, 2006, Permafrost and the global carbon budget: Science, 312, 1612–1613, doi: 10.1126/science.1128908.SCIEAS0036-8075CrossrefWeb of ScienceGoogle Scholar